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Executive summary
This report documents the monitoring and evaluation of Commonwealth environmental watering in the Edward-Wakool system in 2013-14. It provides details of the environmental objectives of the watering actions, study design, indicators, methodology, and an assessment of ecosystem responses to environmental watering with respect to the objectives set by the Commonwealth Environmental Water Office. Results and conclusions from the monitoring and evaluation underpin recommendations for future environmental watering in this system.
Commonwealth environmental watering in the Edward-Wakool system in 2013-14
Prior to the 2013-14 water year commencing eight water use options for the mid-Murray region for 2013-14 were developed by the CEWO (2013a), taking into account likely resource availability, catchment conditions (Table 1) and other key factors including constraints on delivery of environmental water in the Edward-Wakool system. Only options 1 (Edward-Wakool River instream fish flows) and option 3 (Mid-Murray and region water quality and habitat) were monitored by this project. These options are managed within the channel and delivered with regard to demands on the delivery system and risk of downstream impacts. Environmental water may be constrained by other demands on the system, especially during the irrigation season.
The use of Commonwealth environmental water was intended to contribute to baseflows and freshes, and potentially the recession of natural bankfull/overbank flows in the Edward-Wakool River System, to achieve the following expected outcomes (CEWO, 2013b):
1. Increase movement, condition, reproduction and recruitment of native fish
2. Provide end of system flows and increase hydrological connectivity in ephemeral streams (this objective was not assessed in this project)
3. Maintain/improve vegetation condition, including fringing vegetation and emergent/submerged aquatic plants
4. Maintain/improve water quality within the system, particularly dissolved oxygen, salinity and pH
5. Support breeding, recruitment and habitat requirements of a range of native animals, in particular frogs.


Four environmental watering actions undertaken in the Edward-Wakool System in 2013-14 that are the focus of this report were: 
1. Cod maintenance flow – Yallakool Creek
From 17 October 2013 to 16 December 2013, environmental water was delivered to Yallakool Creek (targeting flows of 500 ML/day) to support Murray cod spawning and juvenile drift, and to maintain inundation of nesting habitat. Environmental water return flows from the Murray multi-site watering event met the requirements for this watering action (approx 12,000-18,000 ML).
2. Perch pulse flow – Yallakool Creek
A perch flow was delivered to Yallakool Creek in November 2013 on top of the cod maintenance flow to attempt to stimulate fish spawning in flow-dependent species. Flows were maintained at 500 ML/day for 7 days, from 9 November 2013 flows were increased over two days to ~600 ML/day, held at this increase stage height and returned over two days back to 500 ML/day for cod maintenance. This pulse equated to a temporary river rise of approximately 15 cm in water level at Yallakool Creek Regulator and was also part of the Murray multi-site watering event. This event resulted in a rise of approximately 7-10 cm further down theWakool River system at the Wakool-Barham Road Bridge.
3. Cod maintenance flow recession – Yallakool Creek
From 17 December 2013 to 4 February 2014, 8,494 ML of Commonwealth environmental water contributed to a gradual recession from the cod maintenance flow (500 ML/day) to regulated baseflow levels (~250 ML/day) to provide benefits to aquatic vegetation, frogs and fish. The recession consisted of a 10 cm drawdown (~ 40 ML/day) every 10 days commencing around 26 December. 
4. Colligen-Niemur River continuation flow
From 7 February 2014 to 12 March 2014, 5,759 ML of Commonwealth environmental water was delivered to the Niemur River via Colligen Creek to continue the existing flow in an endeavour to reduce the risk of extremely high water temperatures re-occurring, and to lessen the risk of stress and mortality of native fish and other adverse environmental impacts. From 7 February through 2 March Commonwealth environmental water contributed 200 ML/d on top of existing flows (regulated demand was ~180 ML/d). For 10 days from 3 March through to 12 March Commonwealth environmental water contributed 100 ML/d on top of existing flows. This action was overrun by a rain rejection event being passed down Colligen Creek, which further improved water quality.


Monitoring of responses to environmental watering
Monitoring and evaluation of ecosystem responses to environmental watering in the Edward-Wakool system has been undertaken since 2010. This report outlines responses to environmental watering actions in 2013-14 and some longer-term responses, as the Edward-Wakool ecosystem is still recovering from the impact of the blackwater events that occurred between 2009 and 2012.
In 2013-14 monitoring was undertaken in four focus rivers. Commonwealth environmental water was delivered to Colligen Creek and Yallakool Creek (referred to as treatment rivers). In 2013-14 the Wakool River and Little Merran Creek did not receive environmental water (referred to as controls). The Edward River at Stevens Weir was also sampled as it was the source of environmental water. In addition, 41 sites throughout the system were assessed to determine longer-term responses of the fish community to major hydrological events including drought, flooding and blackwater. The frequency of sampling and locations where the indicators were monitored are listed in Table i.
Table i. Summary of location and frequency of sampling in the Edward-Wakool system in 2013-14 grouped according to the ecosystem outcome.
	Expected ecosystem outcome listed in Water Use Minute number 142 (CEWO 2013b)
	Indicators
	Study sites/reaches

	
	
	Focus rivers:
Colligen Ck
Yallakool Ck
Wakool R
Little Merran Ck
	Source:
Edward R (Stevens weir)

	Acoustic array sites in Wakool R, Yallakool Ck and Edward R
	41 sites throughout system

	Increase movement, condition, reproduction and recruitment of native fish
	Fish community 
	
	
	
	annual

	
	Fish movement
	
	
	continuous
	

	
	Fish spawning and reproduction
	Fortnightly                 (Aug to Mar)
	Fortnightly           (Aug to Mar)
	
	

	
	Fish recruitment
	annual
	
	
	

	Provide end of system flows and increase hydrological connectivity in ephemeral streams
	Not assessed in this project
	
	
	
	

	Maintain/improve vegetation condition, including fringing vegetation and emergent/ submerged aquatic plants
	Riverbank and instream vegetation
	monthly                    (Sept to Mar)
	
	
	

	Maintain/improve water quality within the system, particularly dissolved oxygen, salinity and pH
	Water chemistry (dissolved oxygen, light, temp)
	continuous 
	
	
	

	
	Water chemistry (carbon, nutrients)
	fortnightly                 (Aug to Mar)
	Fortnightly           (Aug to Mar)
	
	

	
	Whole stream metabolism
	continuous
	
	
	

	Support breeding, recruitment and habitat requirements of a range of native animals, in particular frogs
	Shrimp
	Fortnightly                 (Sept to Mar)
	fortnightly           (Sept to Mar)
	
	

	
	Frogs
	monthly                    (Sept to Mar)
	
	
	


Ecosystem responses to environmental watering in 2013-14
Objective 1. Increase movement, condition, reproduction and recruitment of native fish
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Photos: Example of fish species encountered during the 2013-14 fish community sampling: left Murray cod, right, golden perch.

· There is a general trend towards improvement of the native fish community in the Edward-Wakool system, although this improvement is species and location-specific. Some of the changes may be due to fish migration into the system because recruitment of some species is poor. There was an increase in the abundance of small bodied generalist species (primarily Australian smelt and carp gudgeon) in 2014 compared to 2013. There was an increase in the biomass of Murray cod, goldfish and bony herring and decrease in the biomass of common carp and golden perch in 2014 compared to 2013.
· The Sustainable Rivers Audit measure of expectedness and nativeness were calculated for fish community data collected from 2010 to 2014. All zones were in poor condition in 2014 in terms of nativeness, an improvement over the very poor condition from 2013. In 2014 all zones were in poor to moderate condition in terms of SRA recruitment index.
· Some individuals of acoustically tagged Murray cod, golden perch and common carp dispersed from the refuge pool into new habitats during early season unregulated flows. Based on two years of monitoring data, Murray cod demonstrated a consistent preference for movement into the upper Wakool River over Yallakool Creek during delivery of environmental water. The reasons for this are unknown, although it highlights the importance of maintaining habitat in both the Wakool River and Yallakool Creek. Factors such as loading of woody habitat, overhanging cover, depth of pools or physical or hydraulic barriers may have an influence on this preference.
· The majority of tagged golden perch remained in the refuge pool throughout the environmental watering actions. Those individuals that did move, went both upstream and downstream from the refuge pool, with most movements occurring at the peak of flows or on the recession. It is not known whether these movements resulted in spawning, and this can be evaluated in a future assessment of recruitment by the Long term Intervention Monitoring project. However, combined with results from fish community sampling and fish spawning the results suggest that the 2013-14 environmental watering did not trigger spawning in this species.
· All acoustically tagged golden perch and some Murray cod returned to the refuge pool at the completion of the recession flows, indicating that these flows were appropriately managed to enable native species to return to refuge habitat.
· Nine of the 13 fish species known to occur in theEdward-Wakool River system successfully spawned in 2013-14. Spawning patterns of the Edward-Wakool fish community were independent of the environmental watering actions. 
· The environmental watering in Yallakool Creek during the Murray cod spawning season did not result in a significantly greater number of larvae in Yallakool Creek compared to rivers that did not receive environmental water. These findings support the results observed in 2012-13 and the body of knowledge that shows that Murray cod spawn at peak times in November-December, regardless of flow conditions.
· Back-calculated spawning dates indicate that golden perch has spawned in all years from 2004–2010. However, the dominant cohort of golden perch and silver perch was spawned in 2009 during periods of low in-flows into the Edward-Wakool system.
· The Yallakool Creek perch flow did not trigger a golden and silver perch spawning response in the monitored reaches, as evidenced by the absence of larvae or eggs. It is possible that these species spawned elsewhere in the system but were undetected by the current monitoring. Future assessment of fish recruitment undertaken as part of the Long Term Intervention Monitoring project may determine if these species spawned in 2013-14.
· Juvenile golden perch, silver perch and Murray cod recruits were not sampled in large enough numbers to detect whether environmental watering actions influenced recruitment of these species. Recruitment of carp gudgeon occurred between August 2013 and March 2014, peaking in November-January, in all rivers regardless of receiving environmental water. In 2013-14 annual recruitment of carp gudgeon was not positively or negatively affected by environmental watering actions in Yallakool Creek and Colligen Creek. This result is different to previous years, where an increase in the abundance of larvae and juveniles was detected in response to environmental watering in Colligen Creek (Watts et al. 2013a; 2013b). Dissimilar recruitment responses to environmental watering actions among years may be related to differences in the peak magnitude of flows or differences in the relationship between discharge and area of inundation in different rivers. This will require an evaluation of spawning responses across multiple years.
Objective 2. Provide end of system flows and increase hydrological connectivity in ephemeral streams
Monitoring of end of system flows and ephemeral streams was not undertaken in this project. 

Objective 3. Maintain/improve vegetation condition, including fringing vegetation and emergent/submerged aquatic plants
[image: ] [image: ]
Photos: left, Charophyte growing in edge of water in Yallakool Creek, near Cumnock Park, right riverbank vegetation on the Wakool River in Murray Valley National Park

· There was a significant increase in the percent cover of submerged aquatic vegetation during the Yallkool Creek cod maintenance flow. The environmental watering enabled the submerged aquatic vegetation (in particular Characeae sp) to persist over an extended period of time. This is a different response to that observed in 2012-13 where the recession was rapid and submerged vegetation was rapidly exposed and desiccated. 
· There was no change in the percent cover of terrestrial riverbank vegetation in each river before, during and after the environmental watering, suggesting there was no response to environmental watering actions. However, the monitoring concluded in March 2014, a month after the end of the maintenance flow recession, and may not have continued long enough to detect terrestrial vegetation responses to the environmental watering. Longer term responses of riverbank vegetation to environmental watering will be examined as part of the Long Term Intervention Monitoring project in the Edward-Wakool system (Watts et al 2014).

Objective 4. Maintain/improve water quality within the system, particularly dissolved oxygen, salinity and pH
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Photos: left, filtering water for carbon analysis; right, Colligen Creek near Niemur River offtake, 11 February  2014

· Commonwealth environmental watering met the objective of maintaining or supporting water quality outcomes as it did not trigger any adverse water quality outcomes or a hypoxic blackwater event. Environmental watering actions did not significantly alter dissolved carbon, total carbon or the organic matter profiles in treatment rivers relative to the control rivers. Bioavailable nutrients were extremely low in these rivers. Some statistically significant differences in nutrient concentrations were found when assessing effects of watering actions, but these differences were extremely small and were not ecologically important.
· Very small increases in metabolic rates that were not ecologically significant resulted from environmental watering actions, most likely because the flows were contained within the stream channel, with little inundation of backwater areas or instream benches. Rates of primary production and ecosystem respiration during 2013-2014 were at the lower end of the normal range found in rivers worldwide.



Objective 5. Support breeding, recruitment and habitat requirements of a range of native animals, in particular frogs.
[image: C:\Users\James\Desktop\shrimp.jpg][image: ]
Photos: left, Freshwater shrimp Paratya australiensis, right, Peron’s Tree frog Litoria peronii
· The spawning of shrimp occurred independently of the environmental watering actions. The rivers that received Commonwealth environmental water had fewer shrimp than the rivers that did not receive environmental water. In particular, the abundance of juvenile Paratya shrimp during the Yallakool Creek perch flow was significantly lower in Yallakool Creek compared to the control rivers. The abundance of Paratya larvae may have been adversely affected by environmental watering during their spawning season, because hydraulic modelling has shown that the magnitude of the environmental watering actions in Yallakool Creek decreased the availability of slackwater habitat that is necessary for shrimp recruitment.
· Frogs were not the main focus of the environmental watering in Yallakool Creek. (Note, Commonwealth environmental water was also provided to Tuppal Creek in 2012-13 to achieve frog outcomes, but that area was not monitored by this project). Whilst a lot of frog activity was observed during the surveys, the environmental watering actions in Yallakool Creek and Colligen Creek did not result in frog recruitment, as no egg masses, tadpoles or metamorphs were observed during surveys. 
· In channel environmental watering actions did not inundate major in-channel geomorphological features (e.g. benches and backwaters), so may not have provided adequate or suitable habitat to support breeding and recruitment of frogs or adequate refuge from predators. There is a need to increase the understanding of interaction between instream flows and instream habitat (see flow recommendations).

Synthesis of responses to Commonwealth environmental watering
The responses to Commonwealth environmental watering observed in 2013-14 were largely consistent with those observed in previous years. In general, Commonwealth environmental water delivered to the Edward-Wakool system contributed to the maintenance of water quality, provided opportunities for longitudinal connectivity and fish movement (such as the return movement of fish to the Wakool Reserve refuge pool during recession flows), promoted instream aquatic vegetation, and created a small increase in wetted benthic area. Importantly, the long-term benefits of the Commonwealth environmental watering actions during blackwater events in 2010, 2011 and 2012 are still being realised. The environmental watering during these blackwater events mitigated extreme low dissolved oxygen concentrations (Watts et al. 2013) and thus created an area of refuge habitat and avoided critical loss of fish in the upper reaches of the Wakool River and Yallakool Creek. The benefits of those watering actions are evident, with fish populations in upper part of the Edward-Wakool system maintaining higher biomass than the populations in the lower reaches. The long-term recovery of fish populations in this system is still occurring. However, some of the changes in the fish community in the middle and lower sections of the system are possibly due to other factors, such as immigration of fish into the system. 
Some of the expected outcomes of Commonwealth environmental watering actions were not observed in the focal rivers, with no detectable response (positive or negative) to Commonwealth environmental watering observed for several indicators. Although fish reproduction is occurring in this system (nine of the 12 species were collected as larvae in 2013-14), the spawning response in these species could not be attributed to Commonwealth environmental watering. So although there is evidence of some recovery in the fish community in areas impacted by the blackwater events in 2010-2012, recruitment has been limited and the recovery of the fish population has been slow, especially for large bodid long-lived species. There have also been only very small increases in river productivity resulting from environmental watering actions. Hydraulic modelling has shown that Commonwealth environmental watering actions have created small increases in wetted benthic area (Watts et al. 2013b), but this has not been sufficient to trigger an increase in gross primary productivity. The delivery of environmental water is constrained by a limited capacity to deliver higher volumes of water in this system without having impacts on third parties. The CEWO has sought to maximize the flows to a level that is acceptable to third parties in the catchment area. Constraints that limit the delivery of environmental watering actions should be examined further and managers collaborate with the community to minimise factors that may limit the benefits of Commonwealth environmental watering actions (see recommendations).
In addition to the positive and and neutral responses associated with Commonwealth environmental watering there was one negative response observed in 2013-14. There was a lower abundance of juvenile paratya shrimp in Yallakool Creek captured during the perch flow and an overall lower abundance of shrimp larvae in Yallakool Creek. This is thought to be due to a reduction in the area of slackwater during watering actions compared to area of available slackwater during base flows (see hydraulic modelling in Watts et al 2013b, Kingsford and Watts 2014). Slackwater habitat is of vital importance for many organisms including larval fish, macroinvertebrates and frogs and there is a need to increase our understanding of the interaction between instream flows and instream habitat to help managers identify critical thresholds and maximise the benefits of environmental water delivery (see flow recommendations).
A summary of the responses to Commonwealth environmental watering is presented in Table ii. The responses were classified as:
· positive, resulting in improved outcomes (dark green) 
· positive, resulting in maintenance of outcomes (light green)
· negative response resulting in adverse outcomes (red)
· no detectable response (neither positive or negative) (white)
· response not assessed by this project (grey)
If we revisit the ecological objectives for the Edward-Wakool system outlined in the water use minute (CEWO, 2013b) we can conclude:
· Objective 1 (Increase movement, condition, reproduction and recruitment of native fish) has been partially achieved, but an increase in reproduction and recruitment has not occurred.
· Objective 2 (Provide end of system flows and increase hydrological connectivity in ephemeral streams (this objective was not assessed in this project) was not assessed by this project
· Objective 3 (Maintain/improve vegetation condition, including fringing vegetation and emergent/submerged aquatic plants) was partly achieved, with an increase in submerged plants but not terrestrial riverbank plants.
· Objective 4 (Maintain/improve water quality within the system, particularly dissolved oxygen, salinity and pH) was achieved.
· Objective 5 (Support breeding, recruitment and habitat requirements of a range of native animals, in particular frogs) was not achieved.

Table i. Summary of ecosystem responses to Commonwealth environmental watering in the Edward-Wakool system in 2013-14. Dark green shading indicates improved outcomes, Light green indicates positive outcome resulting in maintenance, red shading indicates adverse outcome, white shading indicates no detectable response (neither positive or negative). Grey boxes are where no evaluation was undertaken. N/A = not evaluated.
	Indicators
	Responses to unregulated flows in Aug and Sep
	Short-term responses to Commonwealth environmental water (responses to individual watering events or flows)
	Annual response (Comparison among rivers across year)
	Longer-term responses (across multiple years)

	
	
	Yallakool cod maintenance flow and recession
	Yallakool perch flow
	Colligen-Niemur continuation flow
	
	

	Fish community
	N/A
	N/A
	N/A
	N/A
	N/A
	Improvement of the native fish community over time

	Fish movement
	Movement of Murray cod and golden perch out of refuge pool
	Preference by Murray cod for Wakool R compared with Yallakool Creek
	No change in habitat occupation  detected in golden perch
	N/A
	Preference by Murray cod for Wakool River compared with Yallakool Creek
	N/A

	
	
	Return movements of golden perch to refuge pool during recession
	
	
	
	

	Fish spawning and reproduction
	N/A

	No response detected
	No response detected
	N/A
	9 species spawned but was not related to e-watering. More smelt, gudgeon in Edward R
	N/A

	Fish recruitment
	N/A
	N/A
	N/A
	N/A
	No effect of e-watering on recruitment in carp gudgeon
	N/A

	Riverbank and instream veg
	N/A
	Increase in % cover of submerged aquatic veg.
	N/A
	N/A
	Significant differences in veg between rivers but not related to e-watering
	N/A

	
	
	No response in riverbank terrestrial vegetation
	
	
	
	

	Water quality and chemistry
	HIgher DOC, slower decline in Little Merran Creek
	Maintain water quality, no advserse response observed
	Maintain water quality, no advserse response observed
	Maintain water quality, no advserse response observed
	N/A
	N/A

	Organic matter characterisation
	Inc in amount and complexity of organic matter
	Maintain water quality
	Maintain water quality
	Maintain water quality
	N/A
	N/A

	Stream metabolism
	N/A
	Maintain productivity. There were very small changes in gross primary production and ecosystem respiration that are not ecologically important (< 1 mg O2/L/Day)
	N/A
	N/A

	Shrimp
	N/A
	No response detected
	Significantly lower numbers of juvenile Paratya shrimp in Yallakool Creek
	No response detected
	Abundance of P. australiensis larvae lower in Yallakool Creek. 
	N/A

	Frogs
	N/A
	No response detected
	No response detected
	No response detected
	No breeding response detected

	N/A





Recommendations
Recommendation 1. Use Commonwealth environmental water to manage the recession of unregulated flows and environmental watering actions
The rate of recession under regulated flows in the Edward-Wakool system is likely to be much faster than the rate of change under natural flow conditions. Slowing down the rate of recession can provide ecological benefits by creating conditions that the biota in these systems would be more adapted to. Commonwealth water contributed to a recession flow in 2013-14, and this promoted the growth and longer duration of instream aquatic vegetation in Yallakool Creek compared to 2012-13 when rates of recession were much faster. In 2013-14 all acoustically tagged golden perch and some Murray cod returned to the refuge pool at the completion of the recession flows, indicating that these flows were appropriately managed to enable native species to return to refuge habitat. Commonwealth environmental water should continue to be allocated to manage recession flows following unregulated flow events or at the end of environmental watering actions. 
Recommendation 2. Continue to use Commonwealth environmental water to mitigate adverse water quality events
Commonwealth environmental water has been used on several occasions to mitigate the advserse outcomes of poor water quality events. Monitoring results have demonstrated that these actions have been successful in maintaining water quality. Rapid action and coordination of information by the Edward-Wakool e-flows Group and the Water Murray and District Dissolved Oxygen Group are a vital part of this action.
Recommendation 3. Focus timing of Commonwealth environmental watering on late winter/spring
Available hydrological modelling suggests that the flow regime of the Edward-Wakool system has been significantly altered by river regulation, with changes to the timing and volume of flows. Natural flows in the system would have been high in winter/spring and low in summer and autumn. Late winter/spring flows were a key feature in these systems and biota are likely to be adapted to this regime. Monitoring results have shown that early season unregulated flows in 2013-14 enabled all fish species to disperse from the refuge pool into new habitats. Environmental watering in winter/spring also minimises risks of adverse water quality outcomes. In the absence of natural or regulated flows in late winter or early spring, Commonwealth environmental water should be targeted at this time of the year to enhance dispersal opportunities and maximise growth and reproductive opportunities. Winter/spring flows can be delivered to complement other watering actions delivered at other times of the year targeting other ecological outcomes (e.g. fish spawning).
Recommendation 4. Introduce flow variability into environmental watering actions
The Edward-Wakool river ecosystems have evolved in the presence of flow variability, and there is good evidence to suggest that flow variability can lead to healthy and resilient populations. It is recommended that some of the natural levels of variability should be incorporated within managed environmental watering actions. In general, long periods of constant flow and rapid flow recession should be avoided. One approach to achieve this is to use a whole of system approach to manage flows in the Murray system, using upstream triggers to guide variability. Recent flow events could provide a baseline to enable this approach to be tested to determine its benefits. See flow recommendation 7 for a recommended approach to help guide these decisions.
Recommendation 5. Deliver a variety of flows over time to improve understanding of responses to environmental watering
Some results from monitoring and evaluation of environmental watering are difficult to interpret, as it is not always possible to disentangle the responses to flow from responses related to a specific river. For example, Murray cod have demonstrated a consistent preference for the upper Wakool River over Yallakool Creek based on the past two years of monitoring, however it is unclear whether this is due to a general preference for the Wakool River over Yallakool Creek, or is related to delivery of environmental water. Future targeted watering of the upper Wakool River to maintain or maximise nest site inundation should be considered, as this would improve our understanding of responses to flows by disentangling the factors of river and flow. In addition, the upper Wakool River has not been the target of environmental watering actions over the past three years.
Recommendation 6. Increasing understanding of interaction between instream flows and instream habitat
There is a need to identify and quantify the instream geomorphological features in the rivers likely to receive Commonwealth environmental water to help better target environmental watering actions, especially decisions around the magnitude of water delivery. Understanding the relationship between flow and instream features such as large woody instream habitat, geomorphological features (such as benches, backwaters) and anabranch systems will allow managers to identify critical thresholds and maximise the benefits of environmental water delivery.
Recommendation 7. Undertake comprehensive flows assessment for the smaller creeks and rivers of the Edward-Wakool system
There is a need for a scientific expert panel to use a reputable flows method to provide guidelines for delivery of environmental water, considering the breadth of geomorphological and ecological responses. While there has been some modelling undertaken for the Edward River, there is currently a lack of hydrological modelling on unregulated flow regimes of the smaller creeks and rivers in the Edward-Wakool system and this information is required to underpin decisions on environmental watering in this system. The flows assessment would need to consider factors such as natural rate of recession and rise in flows, short term and long term variability in changes to water height, timing and duration of instream pulses, and low flow periods. Based on the flows assessment, it would be possible to consider which aspects of the flow regime are most or least affected by regulation, and consider how these changes are likely to affect ecological features or assets of the Edward-Wakool system (eg vegetation, bench inundation, flow requirement for fish and birds etc). This would guide decisions and operating guidelines for future environmental watering actions. The flows recommendations should not be single species or group focussed, but consider all aspects of the river ecosystem. This information would underpin environmental watering plans and actions and maximise the benefit for the whole ecosystem.
Recommendation 8. Examine constraints that limit the delivery of environmental watering actions. Collaborate with other management agencies and the community to minimise factors that may limit the benefits of Commonwealth environmental watering actions
[bookmark: _Toc325024073][bookmark: _Toc325028460]There were no observable increases in gross primary productivity, food resources or fish spawning in response to the Commonwealth environmental watering in 2013-14. If the proposed flows assessment (see recommendation 7) recommends that higher discharges are required to provide these instream benefits, then a comprehensive examination of flow constraints and a concurrent community consulation process will required to examine constraints to the delivery of larger in-channel environmental watering events. In the meantime, it is strongly recommended that there is continued monitoring of discharge, metabolism, food resources, habitat and fish community metrics (e.g. recruitment, movement, long term community structure) across a diverse range of base flow, natural flows and watering actions over a wide spread of seasons to better understand the conditions that are required to illicit ecosystem responses to flows. There are other factors (e.g. small instream barriers) that may limit how the ecosystem responds to Commonwealth environmental watering. The CEWO should actively work with other agencies and the community to reduce the impacts of these other factors to produce better ecosystem responses to environmental watering.
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[bookmark: _Toc416417031]Introduction
Purpose of this report
This report documents the monitoring and evaluation of ecosystem responses to Commonwealth environmental watering in the Edward-Wakool system in 2013-14. It provides details of the watering actions, study design, indicators, methodology, and an assessment of ecosystem responses to environmental watering with respect to the objectives set by the Commonwealth Environmental Water Office. Results and conclusions from the monitoring and evaluation underpin recommendations for future environmental watering in this system.
The Edward-Wakool system
[bookmark: _Ref320613878][bookmark: _Ref320613830][bookmark: _Toc324953402]The Edward-Wakool system is a large anabranch system of the Murray River main channel. The system begins upstream of the Barmah choke, and travels northwest through a series of river red gum forests before discharging back into the Murray River downstream of Kyalite (Figure 1). It is a complex network of interconnected streams, ephemeral creeks, flood-runners and wetlands including the Wakool River, Yallakool Creek, Colligen-Niemur Creek and Merran Creek. 
[image: ]
Figure 1. Map of the Edward-Wakool system. 
The Edward-Wakool system has high native species richness and diversity, including threatened and endangered fish, frogs, mammals, and riparian plants. It is listed as an endangered ecosystem, as part of the ‘aquatic ecological community in the natural drainage system of the lower Murray River catchment’ in New South Wales (NSW Fisheries Management Act 1994). This system has abundant areas of fish habitat, and historically had diverse fish communities which supported both commercial and recreational fisheries.
[bookmark: _Toc334533607][bookmark: _Toc362347829]Like many areas of the Murray-Darling Basin, the Edward-Wakool system has suffered from the effects of river regulation, migration barriers and degradation of water quality. Water regimes within the Edward-Wakool system have been significantly altered by river regulation (Green 2001; Watkins et al. 2010; Hale and SKM 2011), with changes to the timing and volume of flows. Natural flows in the system would have been high in spring and low in summer and autumn. River regulation is likely to have altered water velocities, the availability of in-channel habitat types, and ecosystem processes and functions. Although some modelling and assessment of natural flows in the Edward River is available (e.g. Green 2001; Hale and SKM 2011), there is a lack of models for the smaller rivers and creeks in the Edward-Wakool system.
History of Commonwealth environmental watering in the Edward-Wakool system 
Commonwealth environmental water has been delivered to rivers in the Edward-Wakool system since 2010. Over that time there have been several occasions where instream freshes have been delivered to Yallakool Creek and Colligen Creek (Watts et al. 2013a; 2013b). In addition, there have been several watering actions where Commonwealth environmental water has been delivered from the Edward River and/or from irrigation escapes to improve water quality and create refuge during poor water quality events.
Ecosystem responses to environmental watering in 2013-14 will be influenced by the history of flows in this system. Between February 2006 and September 2010 there were periods of minimal or no flow in the Edward-Wakool system due to severe drought conditions (Figure 2). In 2007-08 there was a blackwater event that resulted in the loss of many thousands of native fish, including large individuals of Murray cod. At the break of the drought a number of unregulated flow events occurred in the Edward-Wakool system between September 2010 and March 2011 (Figure 3). Since 2011 unregulated flows have occurred each year. 
[bookmark: _Ref320614796]
[bookmark: _Ref324953812][bookmark: _Toc324953403][bookmark: _Ref324953806][bookmark: _Toc398112756]Figure 2. Daily discharge between 01/01/08 and 28/02/13 in three rivers in the Edward-Wakool system: Colligen Creek, Yallakool Creek, and the Wakool River. Daily discharge data was obtained from NSW Government water information website (NSW Office of Water, 2012) for three stations: Colligen Creek regulator (409024), Wakool River offtake regulator (409019), Yallakool Creek offtake regulator (409020).

Previous monitoring of Commonwealth environmental watering in the Edward-Wakool system 
Monitoring and evaluation of ecosystem responses to environmental watering in the Edward-Wakool system has been undertaken since 2010. In 2010 a fish monitoring program was established by NSW Department of Primary Industries and the Murray Local Land Services (formerly known as the Murray Catchment Management Authority (Murray CMA)). Fish monitoring sites were established throughout the Edward-Wakool system that has now been sampled for five consecutive years. In addition, an array of acoustic receivers was established to monitor behavioural responses to environmental watering. In 2011-12, Charles Sturt University, Monash University and the Murray CMA monitored ecosystem responses to environmental watering in the Edward Wakool system (Watts et al. 2013a) focussing on four rivers: Colligen Creek, Yallakool Creek, Wakool River, and Little Merran Creek. The project involved comparing ecosystem responses in rivers that received environmental water to those in rivers that did not receive environmental water. In 2012-13 the long-term fish monitoring, fish movement and ecosystem monitoring were brought together into a single collaborative project (Watts et al 2013b).
The monitoring of Commonwealth environmental watering undertaken in 2013-14 follows on from these previous projects. The Edward-Wakool river system is still recovering from the impact of the blackwater events that occurred in 2010 and 2011. In this report we will report on longer-term responses to environmental watering as well as shorter-term responses to watering events in 2013-14. This report will also provide information to inform decisions on the timing, duration and magnitude of flows in this system to assist the adaptive management of future flows.

[bookmark: _Toc416417032]Commonwealth environmental water use options and objectives 2013-14
Prior to the 2013-14 water year commencing eight water use options for the mid-Murray region for 2013-14 were developed by the CEWO (2013a), taking into account a range of possible resource availability and the catchment conditions (Table 1). Options 1 (Edward-Wakool River instream fish flows) and 3 (Mid-Murray and region water quality and habitat), highlighted in yellow in Table 1, were monitored by this project. Options not monitored include: option 2 Ephemeral water courses; options 4 and 5 the mid-Murray River channel; option 6 Barmah-Millewa Forest; option 7 Werai Forest; and Option 8 Gunbower Forest. A summary of water use option 1 and 3 that are the focus of this monitoring report are provided below and in Appendices 1 and 2 respectively. 
Table 1. Summary of water use options for the mid-Murray region for 2013-14 in relation to resource availability (from CEWO 2013a). Option 1 and 3 (highlighted in yellow) were evaluated by the current monitoring program in the Edward-Wakool system
	Watering Options
	Applicable level(s) of resource availability

	
	Low
	Moderate
	High
	Very High

	Option 1 – Edward-Wakool River System instream fish flows
	Contribute to river base flows and freshes, and the recession of bankfull and overbank flows, to support the condition and reproduction of native fish in the Edward-Wakool River System

	Option 2 – Ephemeral water courses
	Contribute to river base flows and freshes to support the recovery of ephemeral streams in the Murray River catchment. Watering will support the condition and reproduction of native vegetation, fish and other vertebrates, hydrological connectivity and end of system flows, and maintenance of refuges and water quality (in particular dissolved oxygen, salinity and pH)

	Option 3 – Mid-Murray region water quality and habitat
	Contribute to river base flows and freshes in the mid-Murray river channel and Edward-Wakool River System, to support management of water quality issueswithin instream environments to protect ecosystems and their functions, and to build ecosystem and population resilience by supporting landscape and habitat refuges, promoting resistance, and recovery.

	Option 4 – Mid-Murray River channel
	Contribute to river freshes and the recession of bankfull and overbank flows in the mid-Murray River channel, and the inundation of low-lying wetlands/floodplains, to support the condition and reproduction of native fish and vegetation, and dispersal of native fish
	Option unlikely to be pursued under this resource availability

	Option 5 – Mid-Murray river channel – winter/early spring flows
	Contribute to river base flows and freshes in the Murray River channel between Hume Dam and Euston during winter and early spring, to contribute to returning a more natural pattern of flow to elements of the hydrograph affected by regulation. This option will create habitat and support survival of aquatic biota (e.g. native fish and Murray crayfish), and support hydrological connectivity
	Option unlikely to be pursued under this resource availability

	Option 6 – Barmah-Millewa forest
	Contribute to base flows, freshes, bankfullflows and overbank flows in Barmah-Millewa Forest, to support inundation of floodplain vegetation, waterbird breeding, fish reproduction and habitat, hydrological connectivity between the river and floodplain, and contribute to processes such as nutrient and carbon cycling
	Option unlikely to be pursued under this resource availability

	Option 7 – Werai Forest
	Contribute to overbank flows (infrastructure assisted) within Werai Forest, to increase ecosystem diversity and to support the condition and reproduction of wetland and floodplain vegetation, native fish, waterbirds and other vertebrates, and processes such as primary production, as well as contribute to decomposition and nutrient and carbon cycling.
	Option unlikely to be pursued under this resource availability

	Option 8 – Gunbower Forest
	Contribute to river base flows and freshes in Gunbower Creek to support native fish condition. The riority for Gunbower Forest is to allow a drying phase.


Watering Option 1 (see Appendix 1) applies to base flows, freshes and the recession of bankful and overbank flows. The purpose of this option is to support the condition and reproduction of native fish, which may involve contributing to instream flows to maximise available breeding habitat, create conditions favourable for reproduction (e.g. freshes), or contribute to the survival of native fish (CEWO 2013a). These flows are to be managed within the channel and delivered with regard to demands on the delivery system and risk of downstream impacts. Environmental water may be constrained by other demands on the system, especially during the irrigation season.
Watering Option 3 (see Appendix 2) applies to base flows and freshes. The purpose of this option is to manage water quality issues within instream environments in the mid-Murray catchment. This option aims to contribute to the maintenance or improvement of water quality, to support the condition and reproduction of native fish, other vertebrates (e.g. frogs) and macroinvertebrates, and also contribute to the growth and survival of native fish. Where water quality issues are wide-spread, this option may include providing environmental water to create localised refuge habitat (CEWO 2013a). This option is more likely to be required during warmer months. This option may utilise releases from Murray Irrigation Limited escapes.
As both Option 1 and 3 focus on the delivery of in-channel flows, the ecological objectives for this system focus on breeding, recruitment and habitat requirements of native fish and other aquatic organisms, maintenance of water quality, provision of instream refuge habitat, as well as in-channel ecosystem functions. 
To implement the water use options, the CEWO prepared more detailed water use minutes (WUM)(CEWO 2013b) for the consideration and approval of the Commonwealth Environmental Water Holder (CEWH). These WUMs reflect more detailed consideration of a range of issues and consultation with agencies and communities. The use of Commonwealth environmental water was intended to contribute to baseflows and freshes, and potentially the recession of natural bankfull/overbank flows in the Edward-Wakool River System during 2013-14, to achieve the following expected outcomes (CEWO 2013b):
1. Increase movement, condition, reproduction and recruitment of native fish
2. Provide end of system flows and increase hydrological connectivity in ephemeral streams
3. Maintain/improve vegetation condition, including fringing vegetation and emergent/submerged aquatic plants
4. Maintain/improve water quality within the system, particularly dissolved oxygen, salinity and pH
5. Support breeding, recruitment and habitat requirements of a range of native animals, in particular frogs.


[bookmark: _Toc362347830][bookmark: _Toc416417033]Commonwealth environmental watering in 2013-14
The 2013–14 water year was characterised by drier than average conditions across the Murray catchment. Temperatures were above average, especially throughout summer where southern Australia experienced an extreme, multiday heatwave in January 2014. The water year started with a significant unregulated flow event in August to September 2013 coupled with considerable multi-jurisdictional environmental water deliveries through to December 2013 (including almost 200 GL Commonwealth environmental water). The unregulated flow event is evident in the Wakool River, Colligen Creek and Yallakool Creek hydrograph that received water from the Edward River (Figure 2). This event did not occur in Little Merran Creek that receives water from the Murray River. 
Four environmental watering actions undertaken in the Edward-Wakool System in 2013-14 that are the focus of this report were: 
1. Cod maintenance flow – Yallakool Creek
From 17 October 2013 to 16 December 2013, environmental water was delivered to Yallakool Creek (targeting flows of 500 ML/day) to support Murray cod spawning and juvenile drift, and to maintain inundation of nesting habitat. Environmental water return flows from the Murray multi-site watering event met the requirements for this watering action (approx. 12,000-18,000 ML).
2. Perch pulse flow – Yallakool Creek
A perch flow was delivered to Yallakool Creek in November 2013 on top of the cod maintenance flow to attempt to stimulate spawning in flow-dependent species. Flows were maintained at 500 ML/day for 7 days, from 9 November 2013 flows were increased over two days to ~600 ML/day, held at this increase stage height and returned over two days back to 500 ML/day for cod maintenance. This pulse equated to a temporary river rise of approximately 15 cm in water level at Yallakool Creek Regulator and was also part of the Murray multi-site watering event. This event resulted in a rise of approximately 7-10 cm further down theWakool River system at the Wakool-Barham Road Bridge.
3. Cod maintenance flow recession – Yallakool Creek
From 17 December 2013 to 4 February 2014, 8,494 ML of Commonwealth environmental water contributed to a gradual recession from the cod maintenance flow (500 ML/day) to regulated baseflow levels (~250 ML/day) to provide benefits to aquatic vegetation, frogs and fish. The recession consisted of a 10 cm drawdown (~ 40 ML/day) every 10 days commencing about 26 December. The watering advisory group, including Fisheries, LLS, OEH, SWC and CSU, supported and approved the recession hydrograph.
4. Colligen-Niemur River continuation flow
Extremely hot weather conditions from Monday 13th January 2014 resulted in several consecutive days of > 40 ºC. Water quality monitoring over this period by the NSW Office of Water in the Niemur River recorded the dissolved oxygen (DO) below 4 mg/L and water temperature at 30 ºC. In this instance the extremely high water temperature was the key driver of the low DO. From 7 February 2014 to 12 March 2014, 5,759 ML of Commonwealth environmental water was delivered to the Niemur River via Colligen Creek to continue the existing flow in an endeavour to reduce the risk of extremely high water temperatures re-occurring, and to lessen the risk of stress and mortality of native fish and other adverse environmental impacts. From 7 February through 2 March Commonwealth environmental water contributed 200 ML/d on top of existing flows (regulated demand was about 180 ML/d). For 10 days from 3 March through to 12 March Commonwealth environmental water contributed 100 ML/d on top of existing flows. This action was overrun by rain rejection event being passed down Colligen Creek, which further improved water quality.
[bookmark: _____replySeparator]Less environmental water was delivered to the Edward-Wakool River System in 2013-14 than originally anticipated (Table 2). This was largely a result of unregulated flows and multi-site environmental water contributing to environmental water actions in the Edward-Wakool system and a recommendation from the Edward-Wakool Flows Group to focus on winter-spring actions in 2014-15 over autumn deliveries in 2013-14.
Table 2. Volumes of environmental water delivered to the Edward-Wakool system in 2013-14. 
	Source
	Approved Volume (ML)
	Delivered Volume (ML)
	Net usage (ML)

	CEWO
	45,000
	16,815
	14,883

	Yallakool cod maintenance flow
	met by multi-site event flows 
	

	Yallakool perch pulse
	
	

	Yallakool cod maintenance flow recession
	8,494
	

	Niemur continuation flow
	5,759
	



A summary of hydrological statistics for the 2013-14 water year is presented in Table 3 and a hydrograph in Figure 3. Notable differences in hydrology among the four focus rivers include:
· Minimum discharge (Qmin) was zero for Colligen Creek, Wakool River and Yallakool Creek as there was a period of no flow in these systems in June and early July 2013 when the regulators controlling flows into these tributaries were closed. Flow was continuous in Little Merran Creek and the Q90 (flow exceeded 90% of the time) was considerably higher in Little Merran Creek than in the other three rivers.
· Colligen Creek, Wakool River and Yallakool Creek received an unregulated flow pulse in August and September 2013 (Figure 2). Maximum discharge (Qmax) was considerably lower in Little Merran Creek than all other systems (Table 3) as it did not experience this unregulated flow. Q10 (flow exceeded 10% of the time) was lower in Wakool River and Little Merran Creek than Yallakool Creek and Colligen Creek.
· The median and mean flow in the Wakool River was lower than in the the other rivers. 
· The range of flow was higher in Yallakool Creek than in other rivers. Little Merran Creek had the lowest coefficient of variation, because it did not receive the unregulated pulse or cease to flow.

Table 3. Summary hydrological statistics for four rivers in the Edward-Wakool system for the 2013-14 water year (1/7/13 to 30/6/2014).
	Flow variable
	Colligen Ck
	Wakool R
	Yallakool Ck
	Little Merran Ck

	Qmin
	0
	0
	0
	21

	Qmax
	874
	938
	1224
	406

	mean (Qmean)
	326
	116
	335
	227

	median (Q50)
	304
	71
	300
	218

	Q range
	874
	938
	1224
	384

	Coefficient of variation (CV)
	0.633
	1.428
	0.725
	0.388

	Q90
	1.67
	0.001
	0
	93.78

	Q10
	585.3
	302.5
	593.9
	330.2



[image: ]
Figure 3. Daily discharge (ML/day) between 1/6/13 and 1/6/14 in Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek. Timing and duration of environmental watering in Yallakool Creek and Colligen Creek in 2013-14 is shown with coloured bars representing Commonwealth environmental watering actions 1 to 4. The high flow events in August and September are due to unregulated flows (not environmental water).



[bookmark: _Toc416417034]location of monitoring

The monitoring of ecosystem responses to environmental watering in the Edward-Wakool system in 2013-14 was undertaken as follows:
1. Focus river reaches
Commonwealth environmental water was delivered as freshes via regulators to Colligen Creek, and Yallakool Creek from the Edward River. This enables an assessment of the responses to environmental watering through comparisons of responses in rivers receiving environmental water (‘treatment’ rivers) and rivers not receiving environmental water (‘control’ rivers). In 2013-14 Commonwealth environmental water was delivered to Colligen Creek and Yallakool Creek (treatment rivers), and the Wakool River and Little Merran Creek served as controls (no environmental water). The Edward River at Stevens Weir was also sampled to assess the potential source of propagules for the treatment rivers (Figures 4, 5). The river reaches in each focus river ranged from 3 to 5 km in length. These reaches were also sampled to assess ecosystem responses to environmental watering in 2011-13 (Watts et al. 2013a, 2013b).
[image: ] Figure 4. Location of four focus rivers for the assessment of ecosystem responses to environmental watering in the Edward-Wakool system (shown in red). The Edward River in Stevens Weir (shown in pink) was sampled as a potential source of propagules.


[image: ] [image: F:\DCIM\101K6490\101_2045.JPG]
Colligen Creek			  		   Yallakool Creek
 [image: ] [image: ]
Wakool River	                                                                Little Merran Creek
Figure 5. Photos of study sites in the four focus rivers; Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek.


2. Whole of system fish community assessment
A total of 41 sites were sampled throughout the Edward-Wakool system (Figure 6) to assess the response of the fish community to environmental watering. An acoustic array established in 2010 to assess fish movement in the Wakool River, Yallakool Creek and Edward River continued to be monitored in 2012-13 (Figure 7). 


[image: 2014_samplingsites]
Figure 6. The location of 2014 fish sampling sites in the Edward-Wakool system nested within broad geographic zones. Note the Cadell site was not sampled in 2014. 
[image: ]
Figure 7. Overview of acoustic receiver array In the Edward-Wakool system used to detect fish movements in response to environmental water delivery in 2013-14. The array was established to detect movements in the Wakool-Yallakool River (orange) and also the upper Edward system (yellow). Detailed coverage of the original tagging location at the Wakool-Yallakool junction is enlarged for clarity.
[bookmark: _Toc416417035]Indicators
An ecosystem approach was used to select indicators to evaluate the responses to Commonwealth environmental watering in 2013-2014. We selected a suite of indicators that have clear linkages to each other and reflect the in-channel focus of the water use options for the Edward-Wakool system. The indicators have a strong focus on fish, including fish movement, spawning, recruitment and adult populations. The Edward-Wakool system is recognised as a priority area for fish diversity in the Murray-Darling Basin. Outcomes for fish have continued to be the focus of watering actions in the Edward-Wakool system as they are the key environmental asset and are also highly valued by the Edward-Wakool community. Many of the other indicators (e.g. water quality, vegetation, stream metabolism, shrimp) directly or indirectly influence fish population dynamics, and thus are essential to aid the interpretation and interdependencies. 
A conceptual diagram (Figure 8) illustrates the linkages among indicators under different types of environmental watering. Indicators included in this monitoring program are shaded in blue. Results of hydraulic modelling were reported in Watts et al. (2013b) and Kingsford and Watts (2014).
The frequency of sampling and locations where the indicators were monitored are listed in Table 4. Some indicators were monitored continuously via logging equipment and others were sampled fortnightly or monthly. Some indicators (e.g. water quality, riverbank and instream vegetation, fish larvae abundance) were processed quickly and provide real time information to water managers allowing them to adaptively manage the watering regime to achieve the watering objective. 
The responses of these indicators to Commonwealth environmental water are documented in section 6, with indicators grouped according to the expected ecosystem outcomes listed in Water Use Minute number 142 (CEWO 2013b):
1. Increase movement, condition, reproduction and recruitment of native fish
2. Provide end of system flows and increase hydrological connectivity in ephemeral streams
3. Maintain/improve vegetation condition, including fringing vegetation and emergent/submerged aquatic plants
4. Maintain/improve water quality within the system, particularly dissolved oxygen, salinity and pH
5. Support breeding, recruitment and habitat requirements of a range of native animals, in particular frogs
[image: ]
[bookmark: _Toc385637840]Figure 8.  Conceptual diagram illustrating the linkages among indicators and links different types of environmental watering (freshes, overbank flows, low flows) to fish populations. Indicators included in this monitoring report are highlighted in blue. 
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Table 4. Summary of location and frequency of monitoring of indicators in the Edward-Wakool system in 2013-14, grouped according to the ecosystem outcome.          Note, in-channel hydraulic modelling in the focus rivers was undertaken in 2012-13 and was reported in Watts et al. (2013b) and Kingsford and Watts (2014).
	Expected ecosystem outcome listed in Water Use Minute number 142 (CEWO 2013b)
	Indicators
	Study sites/reaches

	
	
	Focus rivers:
Colligen Ck
Yallakool Ck
Wakool R
Little Merran Ck
	Source:
Edward R (Stevens weir)

	Acoustic array sites in Wakool R, Yallakool Ck and Edward R
	41 sites throughout Edward-Wakool system

	Increase movement, condition, reproduction and recruitment of native fish
	Fish community 
	
	
	
	annual

	
	Fish movement
	
	
	continuous
	

	
	Fish spawning and reproduction
	Fortnightly                 (Aug to Mar)
	Fortnightly           (Aug to Mar)
	
	

	
	Fish recruitment
	annual
	
	
	

	Provide end of system flows and increase hydrological connectivity in ephemeral streams
	Hydraulic modelling
	Undertaken in 2012-13 and reported in Watts et al. (2013b) and Kingsford and Watts (2014).
	
	
	

	Maintain/improve vegetation condition, including fringing vegetation and emergent/ submerged aquatic plants
	Riverbank and instream vegetation
	monthly                    (Sept to Mar)
	
	
	

	Maintain/improve water quality within the system, particularly dissolved oxygen, salinity and pH
	Water quality and chemistry (dissolved oxygen, light, temp)
	continuous 
	
	
	

	
	Water chemistry (carbon, nutrients)
	fortnightly                 (Aug to Mar)
	Fortnightly           (Aug to Mar)
	
	

	
	Whole stream metabolism
	continuous
	
	
	

	Support breeding, recruitment and habitat requirements of a range of native animals, in particular frogs.
	Shrimp
	Fortnightly                 (Sept to Mar)
	fortnightly           (Sept to Mar)
	
	

	
	Frogs
	monthly                    (Sept to Mar)
	
	
	



[bookmark: _Toc416417036]Responses of indicators to Commonwealth environmental watering
[bookmark: _Toc416417037][bookmark: _Toc362347844]Fish community
 (
Photos:
 
Example
 of fish species encountered during the 2014 
fish community sampling:
a) common carp, b) silver perch, c) golden perch, d) trout cod, e) (clockwise from bottom left) bony herring, flat-headed 
gudgeon
, carp 
gudgeon
 and Australian smelt, and f) Murray cod.
Key findings
Fish community sampling was undertaken in May and June 2014 at 41 sites 
(
26 channel and 15 wetland sites
) 
throughout th
e Edward-Wakool system.
Ten native species and three alien species were captured. 
There was an increase in the abundance of small bodied generalist species (primarily Australian smelt and carp 
gudgeon
) in 2014 in comparison to 2013
. There was an increase in the biomass of Murray cod, goldfish and bony herring and decrease in the biomass of common carp and golden perch in 2014 compared to 2013.
Juvenile Murray cod that were spawned in 2013 were captured in 2014 from both the upper Wakool River and 
Yallakool
 Creek. 
Back-calculated spawning dates indicate that 
golden perch spawned in all years from 2004 to 2010 and 
the dominant cohort was spawned in 2009 dur
ing periods of low in-flows in
 t
he Edward-Wakool system
. 
Strong year classes 
of silver perch
 were present from spawning in 2009-10.
The Sustainable Rivers Audit measure of expectedness and 
nativeness
 were calculated for fish community data collected from 2010 to 2014. 
All zones were in poor condition i
n 2014 i
n terms of 
nativeness
, an improvement over the very poor condition from 2013
. In 2014 a
ll 
zones were
 in poor to moderate condition in terms of recruitment
.
There is a general trend towards recovery of the native fish community in the Edward-Wakool system, although this is species and location specific. Some of the changes may be due to fish migration into the system because recruitment of some species is poor. 
Combined with information on fish movement, spawning and recruitment there is a need to adapt the delivery of environmental water to maximise the recovery of native fish 
popoulations
 (see flow recommendations).
)[image: G:\Fishnet\Research Projects\EDWARD Wakool CMA\Reporting_13_14\EW 2014 sampling photos\2014_fish.tif]

Background

[bookmark: _GoBack]Dryland rivers in Australia contain ecological communities that have adapted to extreme hydrological regimes, such as extensive flooding interrupted by long periods of low flow and drought (Humphries et al. 1999, Thoms and Sheldon 2000). The majority of fish communities within these systems have undergone severe declines, and the alteration of natural flow regimes has contributed significantly since European settlement. Flow regulation has reduced habitat complexity, altered the timing and magnitude of flows necessary for critical life stages for fish, reduced in- and off-channel connectivity and has promoted invasion of generalist alien species (Bunn and Arthington 2002). Commonwealth environmental water can be used to restore more natural flow characteristics to benefit native fish by increasing reproduction opportunities, by creating the cues necessary to facilitate migration to trigger a spawning response or improving food availability which can translate to improved condition and larval survival (Humphries et al. 1999, Humphries et al. 2002, King et al. 2003). Further, many native fish species have been known to opportunistically use wetlands and floodplains for nursery habitat and to benefit from increased food availability (Lyon et al. 2010), and the delivery of environmental water can promote connectivity with these off-channel habitats. 
Environmental water delivery has previously provided detectable short-term changes in fish communities in the Edward-Wakool system. For example, Gilligan et al. (2009) examined changes to the fish community before, during and after a 30 GL environmental flow. The objective of the flow was to sustain existing populations by improving water quality in deteriorating conditions during an extreme drought. Spawning in Murray-Darling rainbowfish (Melanotaenia fluviatilis) and un-specked hardyhead (Craterocephalus stercusmuscarum fulvus) was detected during the event, although there was no change detected in the abundances of Murray cod or silver perch (Bidyanus bidyanus) (Gilligan et al. 2009). Following the environmental water release, the abundance of golden perch and carp gudgeons (Hypseleotris spp) was found to decline (Gilligan et al. 2009). These outcomes were all based on a short-term before and after comparison. Whether these benefits contributed to overall long term changes were not determined during such a short term study.
It is likely that short term changes in fish community redistribution during environmental water delivery are driven by movement, localised changes in hydraulic and structural habitat availability and food resources. However, changes in fish community composition at the reach and valley scale are also likely to occur as a result of increasing biomass across the system, overall improvements to fish condition, the presence of recruitment, positive changes in native fish abundance and increased species richness. For example, landscape fish diversity over longer time scales (>10 years) is influenced by available habitat, connectivity and disturbance, which are mainly influenced by the interactions between flow and geomorphology. Providing greater access to habitat through connectivity is achievable using environmental water and will lead to a detectable change, at the valley scale, over the medium-long term. These are expected and measurable changes. The ability to detect change is often influenced by the overall objective of water delivery. Changes in landscape-scale fish condition are generally only applicable if environmental water delivery occurs to drive these impacts, and that only occurs when water holdings are high. 
During periods when water holdings are low, environmental water delivery can be used to prevent deterioration of fish condition, encourage dispersal to refuge sites and to sustain populations present within refuge areas. For instance, a previous environmental watering action in the Edward-Wakool river system successfully prevented a hypoxic blackwater event and protected many fish when water was released from irrigation escapes into the upper Wakool River and Yallakool Creek. Many fish survived in the area where water delivery took place, whilst thousands of fish perished in affected reaches. The delivery of environmental water can also influence native fish reproduction directly by providing cues that stimulate spawning behaviour or provide access to suitable available habitat. Likewise, the delivery of environmental water to drive fish recruitment outcomes can therefore be influenced indirectly by: 1) increasing food resources, 2) increasing available habitat, 3) promoting suitable water quality, and 4) facilitating connectivity and dispersal as described in the conceptual diagram (Figure 8).
A system-wide fish monitoring program was established in 2010 to provide baseline information on native fish population status in the Edward-Wakool system and inform management targets and actions. The program involved establishing long-term fish monitoring sites that have been sampled consecutively for five years. The overall objectives of this monitoring program were to identify ecological assets within the system, quantify the health of the fish community with respect to large-scale hydrological events including the millennium drought, large-scale flooding and hypoxic blackwater, and to determine long term change trajectories in the fish community assemblage associated with these major events. It is expected that this information, combined with information collected on the movement of fish, fish reproduction and fish recruitment, will provide a system-wide multiple lines of evidence approach to water management and delivery to benefit native fish communities in the Edward-Wakool system. Two additional objectives were undertaken in 2013-14 and these included: 1) opportunistic evaluation of targeted cod flows within Yallakool Creek through the collection and daily or annual ageing of juvenile Murray cod captured during annual surveys, and 2) evaluation of cohort strength of flow dependent species golden perch and silver perch with respect to historical system-wide water availability through the use of annual ageing.

Methods

Fish community sampling was undertaken in May and June 2014 at 41 sites throughout the Edward-Wakool system (Figure 6, 9). These sites comprised 26 channel and 15 wetland sites distributed among four broad geographic zones (Upper, Middle, Lower and Werai) (Figure 6). Sampling sites were retained from Watts et al. (2013b) with the exception that Cadell was not sampled due to inaccessibility. Sampling methods were identical to those described in Watts et al. (2013b) for the Sustainable Rivers Audit (SRA) protocol, comprising a standardised effort of electrofishing and unbaited bait traps at each site. 
Juvenile Murray cod were retained from Yallakool Creek and upper Wakool River sites in 2013 and 2014, with otoliths removed to determine daily age (if < 1 year old) or annual age (if > 1 year old) given targeted watering for this species over the past two years. Additionally, golden perch and silver perch were retained from all sites sampled, and additional opportunistic samples were retained and analysed (i.e. from previous sampling in the catchment). Otoliths were removed to determine annual age (Figure 10) and cohort strength relating to previous broad scale hydrological conditions in the system (i.e. drought and flooding) given both golden perch and silver perch are considered flow dependent spawners. All ageing was conducted by Fish Ageing Services (www.fishageingservices.com), and otoliths were checked where relevant for the presence of calcein marks to differentiate among stocked and wild individual golden perch and Murray cod (see Crook et al. 2009). It is important to note that any golden perch or Murray cod stocked prior to 2011, or immigrating into the Edward-Wakool from elsewhere, are unlikely to have received a calcein mark.
To determine changes in both the abundance and biomass of the fish community assemblage, two separate analyses were conducted to using year of sampling (2010, 2011, 2012, 2013 and 2014), broad geographic zone (Lower, Middle, Upper and Werai) and habitat type (Channel and Wetland) as factors. Only data collected using the standardised SRA sampling protocol from previous surveys was included in the analysis. Data were analysed using a three-way fixed factor Permutational Multivariate Analysis of Variance (PERMANOVA; Anderson et al., 2008). Raw data were initially fourth root transformed and the results used to produce a similarity matrix using the Bray-Curtis resemblance measure. All tests were considered significant at P < 0.05. Where significant differences were identified, pair-wise post-hoc contrasts were used to determine which groups differed within factors (Year, Zone or Habitat). Similarity percentage (SIMPER) tests were used to identify individual species contributions to average dissimilarities between factors.  For comparison with the findings of Watts et al. (2013), individual species were grouped into flow guilds comprising four native fish groups and one general alien species group based on life-history similarities (after Baumgartner et al. 2013); foraging (flow) generalists, apex predators, flow dependant specialists, floodplain (off-channel) specialists and alien species.
Changes over time to the overall condition of the fish community assemblage were quantified using three main SRA Indicators (see Robinson 2012). The SRA derived Indicators calculated were; Expectedness (provides a comparison of existing catch composition with historical fish distributions), Nativeness (a combination of abundance and biomass describing the proportion of the community comprised of native fish), and Recruitment (provides a proportion of the entire native fish population that is recruiting). Recruitment was further divided; recruiting taxa (proportion of native species present recruiting), and recruiting sites (proportion of sites where recruitment occurs). These Indicators produce a score that is related to Reference conditions, and receive a condition rating (Extremely Poor (0-20), Very Poor (21-40), poor (41-60), Moderate (61-80), Good (81-100).
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Figure 9. An example of fish community sites sampled in 2014 in the Edward-Wakool system including: a) Gollops Road on Tuppal Creek, b) Four Posts on the Edward River, c) Werai Station on Colligen Creek, d) Stoney Crossing on the Wakool River, e) Tally’s Lake, and f) Northdale Lagoon.
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Figure 10. Example of an ear bone (otolith) from a 17 year-old golden perch captured from the Edward-Wakool system. Yellow crosses indicate annual growth increments beginning at age 0 (centre).

Results
Abundance
A total of 4849 fish were collected including 10 native species and three alien species. As in previous years no floodplain specialist species were captured, although the three remaining flow guilds (apex predators, flow specialists and foraging generalists) were well represented (Table 5). Murray cod dominated apex predator capture in the upper and lower channel zones, and one trout cod was captured for the first time in five years of sampling from the upper channel zone (Table 6). Golden perch were the most abundant flow specialist, and silver perch were infrequently captured (Table 6). Australian smelt and carp gudgeon were the most abundant native species, with other foraging generalists including un-specked hardyhead, bony herring and Murray-Darling rainbowfish frequently captured (Table 6). The fish community assemblage in the Edward-Wakool system differed significantly in abundance among years, zones and habitats (Table 7). Pair-wise tests indicated that significant differences occurred between 2014 and 2013 (t=2.727, P<0.001), and SIMPER analysis indicated that these observed differences were primarily driven by differences in foraging generalists Australian smelt and carp gudgeon (Table 8). Goldfish also contributed to differences between years (Table 8). 


Biomass
Common carp, Murray cod and golden perch occupied the greatest overall biomass in 2014. Apex predator biomass was greatest in the mid and upper zones, with most contributed from Wakool Reserve and Four Posts (Figure 11). Foraging generalist biomass was highest in the mid and lower zones from Gee Gee Bridge, Possum Reserve, Wakool Reserve and Merran Creek Bridge (Figure 12). Flow specialist biomass was highest at Balpool and Wakool Reserve sites (Figure 13), and the total biomass of alien species (primarily common carp) was highest at sites in the mid and upper zones, with Smith’s Lagoon contributing the greatest overall biomass of alien species (Figure 14). Fish community biomass differed significantly among years, zones and habitats (Table 7). Pair-wise tests indicated that significant differences in biomass at sites occurred between 2014 and 2013 (t=2.440, P<0.001), and SIMPER analysis indicated that these observed differences arose from changes in the biomass of the apex predator Murray cod, the biomass of alien species common carp and goldfish (Table 9). Biomass differences between 2013 and 2014 were also attributable to the flow specialist golden perch and the foraging generalist bony herring (Table 10). 

Sustainable Rivers Audit (SRA) Indicators
Both expectedness and nativeness SRA indices were highest from all zones sampled in 2010, with expectedness moderate and nativeness poor (Table 11). There was a general trend downwards in these indices in 2011 across most zones, particularly in nativeness values, primarily due to an increase in the abundance and biomass of common carp following natural flooding events in 2010-11. These indices recovered to pre-flood levels, but by 2014 the upper, middle and lower zones were in poor condition in terms of expectedness, while the Werai zone was in very poor condition (Table 11). All zones sampled in 2014 were in poor condition in terms of nativeness, an improvement over the very poor condition from 2013 (Table 11). Although many expected species were present, the poor rating for 2014 is largely because floodplain specialist species expected to occur within the Edward-Wakool system remain undetected. All zones sampled remained in poor to moderate condition in terms of recruitment (proportion of taxa and proportion of sites) in all years, except for the Werai zone in 2013 which was in very poor condition 2013 (proportion of sites only). Both recruitment indices were higher in 2014 compared with 2013, with the exception of the upper zone which had a lower proportion of taxa recruiting in 2014 (Table 11).



Table 5. Summary of total catch (mean ± SE catch per site in parentheses) over five years of sampling in channel and wetland habitats in the Edward-Wakool system.
	Species
	Channel
	
	Wetland

	
	2010
	2011
	2012
	2013
	2014
	
	2010
	2011
	2012
	2013
	2014

	Apex predators
	
	
	
	
	
	
	
	
	
	
	

	Murray cod
	159
(8±2)
	34
(2±1)
	51
(3±1)
	57
(3±1)
	76
(3±1)
	
	22
(3±2)
	0

	0

	8
(1±1)
	8
(1±1)

	trout cod
	0

	0

	0

	0

	1
(1±1)
	
	0

	0

	0

	0

	0


	Flow dependent specialists
	
	
	
	
	
	
	
	
	
	

	silver perch
	10
(1±1)
	10
(1±1)
	13
(1±1)
	7
(1±1)
	6
(1±1)
	
	6
(1±1)
	0

	0

	2
(1±1)
	0


	golden perch
	38
(2±1)
	25
(2±1)
	58
(3±1)
	48
(2±1)
	37
(2±1)
	
	19
(2±2)
	4
(1±1)
	4
(1±1)
	6
(1±1)
	4
(1±1)

	Foraging generalists
	
	
	
	
	
	
	
	
	
	
	

	Australian smelt
	678
(34±13)
	1035
(44±18)
	620
(25±11)
	341
(14±4)
	1539
(60±15)
	
	81
(9±3)
	740
(62±37)
	265
(23±9)
	101
(7±4)
	429
(29±10)

	bony herring
	157
(8±4)
	84
(4±2)
	162
(7±3)
	61
(3±1)
	152
(6±2)
	
	49
(5±3)
	31
(3±2)
	102
(8±5)
	10
(1±1)
	25
(2±1)

	carp gudgeon
	809
(41±13)
	281
(12±5)
	135
(2±1)
	932
(36±34)
	183
(8±3)
	
	1952
(196±115)
	292
(25±12)
	616
(55±25)
	585
(37±19)
	993
(67±26)

	flat-headed gudgeon
	3
(1±1)
	1
(1±1)
	0

	0

	1
(1±1)
	
	10
(1±1)
	0

	0

	16
(1±1)
	25
(2±2)

	Murray rainbowfish
	1110
(56±19)
	631
(27±8)
	84
(4±2)
	11
(1±1)
	79
(4±2)
	
	533
(54±33)
	235
(20±11)
	140
(11±5)
	8
(1±1)
	43
(3±2)

	un-specked hardyhead
	1749
(88±26)
	301
(13±8)
	7
(1±1)
	13
(1±1)
	57
(3±2)
	
	823
(83±30)
	158
(14±10)
	109
(9±5)
	6
(1±1)
	228
(16±11)

	Alien species
	
	
	
	
	
	
	
	
	
	
	

	common carp
	487
(25±7)
	3632
(152±27)
	1022
(43±6)
	526
(21±5)
	489
(19±5)
	
	720
(72±38)
	1712
(143±66)
	955
(74±36)
	284
(18±5)
	222
(15±6)

	gambusia
	28
(2±1)
	78
(4±2)
	0

	1
(1±1)
	11
(1±1)
	
	72
(8±6)
	51
(5±3)
	8
(1±1)
	7
(1±1)
	56
(4±2)

	goldfish
	193
(10±3)
	1131
(48±19)
	231
(9±3)
	105
(5±2)
	84
(4±1)
	
	387
(39±22)
	546
(46±25)
	493
(41±27)
	59
(4±2)
	101
(7±3)

	oriental weatherloach
	0

	9
(1±1)
	1
(1±1)
	0

	0

	
	0

	0

	1
(1±1)
	0

	0


	redfin perch
	8
(1±1)
	1
(1±1)
	3
(1±1)
	3
(1±1)
	0

	
	0

	0

	0

	2
(1±1)
	0




Table 6. Summary of total catch (mean ± SE catch per site in parentheses) during 2014 sampling in the Edward-Wakool system.

	Species
	Channel
	
	Wetland
	Total

	
	Upper
	Middle
	Lower
	Werai
	
	Upper
	Middle
	Lower
	Werai
	

	Apex predators
	
	
	
	
	
	
	
	
	
	

	Murray cod
	27
(3±1)
	18
(3±2)
	25
(4±2)
	6
(2±1)
	
	0

	8
(2±1)
	0

	0

	84

	trout cod
	1
(1±1)
	0

	0

	0

	
	0

	0

	0

	0

	1

	Flow dependent specialists
	
	
	
	
	
	
	
	
	

	silver perch
	1
(1±1)
	1
(1±1)
	3
(1±1)
	1
(1±1)
	
	0

	0

	0

	0

	6

	golden perch
	14
(2±1)
	4
(1±1)
	12
(2±1)
	7
(3±2)
	
	2
(1±1)
	2
(1±1)
	0

	0

	41

	Foraging generalists
	
	
	
	
	
	
	
	
	
	

	Australian smelt
	944
(95±34)
	167
(28±15)
	132
(19±7)
	296
(99±26)
	
	129
(33±16)
	234
(39±22)
	48
(16±8)
	18
(9±9)
	1968

	bony herring
	11
(2±1)
	45
(8±3)
	90
(13±5)
	6
(2±2)
	
	11
(3±3)
	14
(3±2)
	0

	0

	177

	carp gudgeon
	111
(12±6)
	32
(6±2)
	34
(5±3)
	6
(2±1)
	
	228
(57±38)
	614
(103±58)
	102
(34±19)
	49
(25±20)
	1176

	flat-headed gudgeon
	1
(1±1)
	0
(0±0)
	0

	0

	
	1
(1±1)
	9
(2±1)
	15
(5±5)
	0

	26

	Murray rainbowfish
	46
(5±2)
	20
(4±4)
	11
(2±2)
	2
(1±1)
	
	10
(3±2)
	32
(6±3)
	1
(1±1)
	0

	122

	un-specked hardyhead
	36
(4±4)
	13
(3±2)
	8
(2±1)
	0

	
	2
(1±1)
	66
(11±9)
	160
(54±52)
	0

	285

	Alien species
	
	
	
	
	
	
	
	
	
	

	common carp
	317
(32±11)
	76
(13±5)
	65
(10±2)
	31
(11±5)
	
	64
(16±9)
	143
(24±14)
	12
(4±1)
	3
(2±2)
	711

	gambusia
	11
(2±1)
	0
(0±0)
	0

	0

	
	26
(7±6)
	5
(1±1)
	21
(7±5)
	4
(2±2)
	67

	goldfish
	34
(4±2)
	9
(2±2)
	41
(6±2)
	0

	
	43
(11±6)
	46
(8±6)
	8
(3±1)
	4
(2±1)
	185






Table 7. Results from PERMANOVA comparisons of site abundance and biomass of fish sampled annually in the Edward-Wakool system from 2010–2014.
	Source of variation
	df
	MS
	Pseudo-F
	P

	Site abundance
	
	
	
	

	Year
	4
	8913.3
	11.546
	0.001

	Zone
	3
	5983.1
	7.750
	0.001

	Habitat
	1
	17571.0
	22.761
	0.001

	Year*Zone
	11
	1062.2
	1.376
	0.038

	Year*Habitat
	4
	1167.5
	1.512
	0.064

	Zone*Habitat
	3
	1754.5
	2.273
	0.004

	Year*Zone*Habitat
	11
	668.0
	0.865
	0.752

	Residual
	147
	772.0
	
	

	
	
	
	
	

	Site biomass
	
	
	
	

	Year
	4
	5019.7
	7.840
	0.001

	Zone
	3
	5075.7
	7.927
	0.001

	Habitat
	1
	17335.0
	27.073
	0.001

	Year*Zone
	11
	846.4
	1.322
	0.079

	Year*Habitat
	4
	998.9
	1.560
	0.065

	Zone*Habitat
	3
	1208.2
	1.887
	0.027

	Year*Zone*Habitat
	11
	799.6
	1.249
	0.125

	Residual
	147
	640.3
	
	



Table 8. Changes in fish species site abundance between 2013 and 2014 as determined through SIMPER analysis. Note only species contributing ≥10% to change are included.
	Species
	Contribution to change (%)
	2014 response

	Australian smelt
	15
	Increase

	carp gudgeon
	14
	Increase

	goldfish
	10
	Increase



Table 9. Changes in fish species site biomass between 2013 and 2014 as determined through SIMPER analysis. Note only species contributing ≥10% to change are included.
	Species
	Contribution to change (%)
	2014 response

	Murray cod
	18
	Increase

	common carp
	18
	Decrease

	golden perch
	16
	Decrease

	goldfish
	13
	Increase

	bony herring
	10
	Increase

	goldfish
	10
	Increase





Table 10. Pre-European (PERCH) list of the expected native species present in the central Murray region of the Murray Darling Basin.
	Common name
	Scientific name
	Found in present study

	
	
	2010
	2011
	2012
	2013
	2014

	Long lived apex predators

	Murray cod
	Maccullochella peelii
	Y
	Y
	Y
	Y
	Y

	trout cod
	Maccullochella macquariensis
	N
	N
	N
	N
	Y

	Flow dependent specialists

	silver perch
	Bidyanus bidyanus
	Y
	Y
	Y
	Y
	Y

	golden perch
	Macquaria ambigua
	Y
	Y
	Y
	Y
	Y

	Foraging generalists

	Australian smelt
	Retropinna semoni
	Y
	Y
	Y
	Y
	Y

	bony herring
	Nematalosa erebi
	Y
	Y
	Y
	Y
	Y

	carp gudgeon
	Hypseleotris spp
	Y
	Y
	Y
	Y
	Y

	dwarf flat-headed gudgeon
	Philypnodon macrostomus
	N
	N
	N
	N
	N

	flat-headed gudgeon
	Philypnodon grandiceps
	Y
	N
	N
	Y
	Y

	freshwater catfish
	Tandanus tandanus
	N
	N
	N
	N
	N

	Macquarie perch
	Macquaria australiasica
	N
	N
	N
	N
	N

	Murray-Darling rainbowfish
	Melanotaenia fluviatilis
	Y
	Y
	Y
	Y
	Y

	Murray hardyhead
	Craterocephalus fluviatilis
	N
	N
	N
	N
	N

	shortheaded lamprey
	Mordacia mordax
	N
	N
	N
	N
	N

	river blackfish
	Gadopsis marmoratus
	N
	N
	N
	N
	N

	un-specked hardyhead
	Craterocephalus stercusmuscarum
	Y
	Y
	Y
	Y
	Y

	Floodplain (or off-channel) specialists

	flat-headed galaxias
	Galaxias rostratus
	N
	N
	N
	N
	N

	mountain galaxias
	Galaxias olidus
	N
	N
	N
	N
	N

	olive perchlet
	Ambassis agissizi
	N
	N
	N
	N
	N

	southern purple spotted gudgeon
	Mogurnda adspersa
	N
	N
	N
	N
	N

	southern pygmy perch
	Nannoperca australis
	N
	N
	N
	N
	N






Table 11. SRA indicators separated by geographic zones within the Edward-Wakool system, with values generated from 2014 sampling indicated in bold.
	Location
	Year
	Expectedness
(OE_metric)
	Nativeness
	Recruitment (proportion of taxa)
	Recruitment (proportion of sites)

	Upper
	2010
	74
	59
	67
	64

	Upper
	2011
	56
	33
	63
	56

	Upper
	2012
	49
	31
	63
	52

	Upper
	2013
	36
	34
	75
	51

	Upper
	2014
	55
	48
	67
	52

	Middle
	2010
	64
	46
	78
	65

	Middle
	2011
	43
	15
	63
	51

	Middle
	2012
	49
	21
	75
	63

	Middle
	2013
	38
	32
	56
	37

	Middle
	2014
	56
	46
	78
	67

	Lower
	2010
	75
	52
	78
	66

	Lower
	2011
	56
	16
	57
	57

	Lower
	2012
	49
	33
	75
	58

	Lower
	2013
	36
	35
	71
	48

	Lower
	2014
	55
	54
	78
	64

	Werai
	2010
	Not sampled

	Werai
	2011
	19
	24
	67
	57

	Werai
	2012
	37
	41
	67
	49

	Werai
	2013
	30
	34
	43
	38

	Werai
	2014
	37
	51
	57
	47
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Figure 11. Total apex predator biomass at each sampling site (grams per site) over five years of sampling in the Edward-Wakool system.
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Figure 12. Total foraging generalist biomass at each sampling site (grams per site) over five years of sampling in the Edward-Wakool system.
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Figure 13. Total flow specialist biomass at each sampling site (grams per site) over five years of sampling in the Edward-Wakool system.
[image: EW_Fishsamplingsites_A_biomass_2010to2014]
Figure 14. Total alien species biomass at each sampling site (grams per site) over five years of sampling in the Edward-Wakool system.

Daily and annual age
Eight possible young-of-year (YOY) Murray cod were captured from the mid and upper Wakool River and Yallakool Creek in 2013 (length range 83–146 mm) and all were aged as 0+. Two sites on Yallakool Creek each contributed two individuals spawned in the 2012-13 watering year (Back Creek Junction and Widgee), with back calculated dates estimating that hatching occurred from 29 November 2012 to 6 January 2013. Three YOY Murray cod were captured from the upper Wakool River (Fallonville), with back calculated dates estimating that hatching occurred from 14 December 2012 to 12 January 2013. One YOY Murray cod was captured from the mid-Wakool River (Possum Reserve) and had an estimated hatch date of 6 November 2012. 
Four possible YOY Murray cod were captured in 2014 from the upper Wakool River and Yallakool Creek. Ageing identified that these four fish comprised a 1+ fish (220 mm; spawned in the 2012-13 watering year) from Back Creek Junction on Yallakool Creek, and three YOY (0+) fish (length range 90–135 mm) from Back Creek Junction on Yallakool Creek (estimated hatch date 12 November 2013), Homeleigh on the Wakool River (estimated hatch date 16 January 2014) and Wakool Reserve on the Wakool River (estimated hatch date 13 December 2014). None of these Murray cod were confirmed to be marked with calcein, indicating they were not hatchery-reared.
Golden perch collected in 2014 (n=44) exhibited a narrow size structure, comprising both sub-adult and adult fish, and ranged in size from 312–526 mm with a dominant size class of 351–400 mm (Figure 15a). These fish comprised a dominant age-class of 4+ individuals with age ranging from 3–17 years (Figure 15b). Approximate back-calculated spawning dates indicate that the dominant cohort was spawned in 2009 during periods of low in-flows into the Edward-Wakool system, and that spawning occurred in all years from 2004–2010 (Figure 16). Three individual fish were excluded from this plot as they represented stocked hatchery-reared fish with identifiable calcein marks and comprised a 1+ individual captured at Four Posts on the Edward River, a 2+ individual captured at Stoney Crossing on the Wakool River and a 4+ individual captured at Fallonville on the Wakool River.
Silver perch collected in 2013 (n=23) and 2014 (n=34) exhibited a narrow size structure, comprising both mature and immature fish, and ranged in length from 126–338 mm in 2013 and 130–370 mm in 2014, with a dominant size class of 251–300 mm in both years of sampling (Figure 17a). These fish comprised a dominant age-class of 3+ individuals in 2013 and subsequent 4+ individuals in 2014, and age ranged from 3–5 years in 2013 and 1–8 years in 2014 (Figure 17b). Approximate back-calculated spawning dates indicate that the dominant cohort in both years of sampling resulted from spawning in 2009, coinciding with periods of low in-flows in the Edward-Wakool system. Results also indicate that some spawning occurred in all years from 2005–2012, with the exception of 2006 (Figure 18). 
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Figure 15. a) Length-frequency of golden perch collected from the Edward-Wakool system in 2014 and, b) associated annual age. 
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Figure 16. a) Approximate spawning year of golden perch collected from the Edward-Wakool system in 2014 and, b) associated mean daily discharge entering the Edward-Wakool system. 
[image: ]
Figure 17. a) Length-frequency of silver perch collected from the Edward-Wakool system in 2013 and 2014 and, b) associated annual age. 
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Figure 18. a) Approximate spawning year of silver perch collected from the Edward-Wakool system in 2013 and 2014 and, b) associated mean daily discharge entering the Edward-Wakool system. 
Discussion
Edward-Wakool system health: SRA metrics
There is a general trend towards improvement of the native fish community in the Edward-Wakool system. The composition of the fish community has undergone significant changes over recent years as a result of major hydrological events including severe drought and widespread flooding, as well as hypoxic blackwater events, and the responses of fish to these events have been species and location-specific. Bice et al. (2014) identified a decrease in the abundance of small-bodied generalist species during a shift from drought to post-flood conditions in the Murray River, and an increase in the abundance of alien species (particularly common carp) post-flooding. The results from this study are largely in agreement with the findings of Bice et al. (2014), and align with existing knowledge of the life-history requirements of these flow guilds (Baumgartner et al. 2013). Some locations in the Edward-Wakool system appear to be recovering from the effects of blackwater and associated fish kills, presumably as a result of active recolonisation as has been demonstrated following fish kills in other systems (e.g. Lyon and O’Connor 2008). Commonwealth environmental water can be actively used to facilitate this recolonisation by increasing lateral and longitudinal connectivity among habitats, and native fish in the system have previously demonstrated movement responses to increased discharge (see Fish movement chapter). Additional remediation of the native fish community has been undertaken at some locations throughout the Edward-Wakool system through the stocking of key recreational species Murray cod and golden perch. This stocking may confound our ability to distinguish natural recovery of the system from the effects of stocking based on the abundance or biomass of these species. However, differentiating among these wild and hatchery-reared fish is possible up to four years of age when chemical marking has been undertaken, as has been the case in the Edward-Wakool system for all individuals of these species stocked since 2011-12. This marking procedure should be continued into the future to enable quantification of long-term ecosystem recovery to inform management actions within the system. 

A complete absence of floodplain specialist species within the Edward-Wakool system is apparent following five years of intensive sampling, and this is likely due to localised extinction following long-term disconnection of off-channel habitats. Subsequently, it is important to recognise that any future watering of these off-channel habitats is undertaken with realistic expectations that floodplain species may not return. Future off-channel watering strategies should support long-term watering plans that will enable conservation stocking, and the subsequent re-establishment, of resident populations of off-channel specialists. As a consequence of the lack of off-channel specialist species, continuing to measure ecosystem recovery using indices such as Expectedness may require revision of targets, although Nativeness and Recruitment indices will continue to be applicable. 

Apex predators
The results from this study suggest that long-lived apex predators (primarily Murray cod) are still recovering from a blackwater event that occurred in late 2010. Biomass remains substantially lower than pre-blackwater levels at many sites, indicating that long lived species take substantial time to recover despite localised stocking efforts in the region. There is some evidence of larval recruitment during in-channel flow conditions in both the Wakool River and Yallakool Creek over the past two years. Murray cod, a nesting species, is threatened by highly variable flow regimes which can expose nests and limit larval survival (Lake 1967; Cadwallader 1977). Although high flow years have been demonstrated to result in stronger year classes for Murray cod (Rowland 1998), the species predominantly spawns in-channel and where abundant benthic prey is available to larvae during low flow conditions (King 2004; Kaminskas & Humphries 2009). King et al. (2009) demonstrated that delivery of environmental water can enhance the spawning and recruitment of Murray cod. Further, Baumgartner et al. (2013) presented a stylised hydrograph targeting large-bodied long lived species and hypothesised that higher stable flows maximise nest-site inundation and produce a microinvertebrate bloom to increase food resources available to larvae as a result of in-channel bench inundation. Yallakool Creek has been the target of nest inundation flows for this species over the past two watering years, and spawning of Murray cod has occurred during Commonwealth environmental water delivery in both years, although higher stable flows delivered to Yallakool Creek in 2012-13 did not result in a microinvertebrate bloom (Watts et al. 2013b). 

Flow dependent specialists
Golden and silver perch represent excellent candidate species for monitoring the delivery of environmental water given they are both considered flow-cued spawners (see Baumgarnter et al. (2013) and references therein). Further, previous evidence has indicated a positive relationship between cohort strength and seasonal inflows (Roberts et al. 2008). In the current study we identified that golden perch biomass in the Edward-Wakool system declined in 2014 compared with 2013. It is worthwhile noting that significant declines in the abundance of golden perch were not apparent, and subsequently the capture of larger (but not more) golden perch in 2013 likely contributed to the observed differences in biomass between years. 

Annual ages of golden perch and silver perch were examined to determine cohort strength in relation to large scale hydrological events. This revealed that: 1) the dominant cohorts for both species were spawned in 2009-10 near the end of the Millennium drought, 2) spawning occurred throughout the Millennium drought, and 3) silver perch spawned and recruited following flooding. Spawning and recruitment can occur for golden and silver perch in low flows years, supporting the suggestion that these species may have a more flexible life-history strategy than previously considered and do not rely solely on overbank flooding (Humphries et al. 1999, Balcombe et al. 2006). Spawning in both species occurred in the Murray River during the Millennium drought at various locations (e.g. King et al. 2005, Tonkin et al. 2007, Zampatti and Leigh 2013a, b). Indeed, Zampatti and Leigh (2013a) identified a strong cohort of golden perch resulting from spawning in 2009-10 in the lower Murray River. Three possible, but not mutually exclusive, explanations exist that may explain the presence of a strong cohort spawned during drought conditions: 1) stocking of unmarked fish, 2) immigration from elsewhere within the southern connected Murray-Darling Basin, or 3) localised spawning and recruitment solely within the Edward-Wakool system. Stocking of these species occurs and represents a possible explanation, although is unlikely to be the source for silver perch as this species is not regularly stocked into rivers in NSW. The contribution of stocking to wild populations remains relatively unknown throughout the entire Murray-Darling Basin, although a current project funded by Murray Local Land Services in the Edward-Wakool system to evaluate stocking effectiveness at blackwater affected sites may clarify this issue locally. Some level of immigration of these species into the Edward-Wakool system is likely to occur given both species are highly mobile. For example, White et al. (2011) reported large catches of juvenile silver perch at Torrumbarry fishway, indicating synchronised and presumably large-scale movements. Further, numerous studies have documented large-scale movements of golden perch in the Murray-Darling Basin (e.g. Reynolds 1983, O’Connor et al. 2005). Emigration from the Darling into the Murray River has recently been identified for golden perch by Zampatti et al. (2014) through the examination of strontium stable isotope ratios in otolith structures and this technique may elucidate the natal origin of both species residing within the Edward-Wakool in the future. However, until evidence is presented to the contrary, targeted Commonwealth environmental water delivery within the Edward-Wakool system towards key life-history stages of these two flow dependent species remains best practice.

Foraging generalists
Foraging generalists are the most abundant guild within the Edward-Wakool system. Biomass and abundance were highest during drought conditions, although distribution was extended throughout the system irrespective of flow. Many native fish species use wetlands and floodplains for nursery habitat and feeding, and thus allowing movement into and out of connected off-channel habitats can increase recruitment and population persistence of some species (Lyon et al. 2010). Foraging generalists are short-lived (<5 years) and can also be schooling species with generally flexible life-history strategies that enable them to opportunistically exploit a range of habitats (Baumgartner et al. 2013). For example, carp gudgeon thrive under extreme low flow conditions as they are able to spawn multiple times within a season and deposit their eggs on the abundant submerged and emergent macrophytes that grow as a result of stable water levels (Bice et al. 2014). This species will also rapidly colonise off channel habitats, frequently dominating the abundance of native fish in wetlands (Lyon et al. 2010). Subsequently, watering strategies that contribute to both low stable water levels and the inundation of off channel habitats can be equally beneficial to generalist species.

Alien species
There is a general trend towards system wide reductions in the abundance and biomass of alien species, although common carp still dominate overall site biomass at most locations. There was a substantial increase in alien species biomass following flooding in 2010-2011, primarily resulting from large-scale spawning and recruitment of common carp in the Edward-Wakool system. This result is consistent with evidence from other locations indicating the importance of floodplain inundation providing key spawning and nursery habitat for this species in the Murray-Darling Basin (Stuart and Jones 2006, Macdonald and Crook 2014). However, substantial declines in subsequent years suggest either emigration from the Edward-Wakool system or mortality associated with a limited capacity for the system to sustain high numbers. Future monitoring of in-channel environmental watering is unlikely to detect large spawning or a recruitment event given that most of this occurs in off-channel habitats. Additional management interventions for common carp including the use of carp cages and impending deployment of the Koiherpes virus, along with increasing knowledge of carp spawning and recruitment hotspots should result in continued declines within the Edward-Wakool system. 
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Fish movement
 (
Photo
s
: 
left, Surgery to insert tags into fish. 
right
; A VR2W acoustic receiver rigged for deployment next to a V13-1x A69 acoustic tag.
Key findings
Acoustic telemetry was used to monitor the movements of four species of fish in 2013-14 (Murray cod (n=23), golden perch (n=17), silver perch (n=3), common carp (n=12)). There was an inadequate sample size of silver perch to base any conclusions on.
Early season unregulated flows in 2013-14 enabled all species to disperse from the refuge pool into new habitats. 
B
ased on two years of monitoring
 data,
 Murray cod demonstrated a consistent preference for 
movement into
 the upper Wakool River over 
Yallakool
 Creek during delivery
 of environmental water
. 
The reasons for this are unknown, although it highlights the importance of maintaining habitat in both the Wakool River and 
Yallakool
 Creek. Factors such as loading of woody habitat, overhanging cover, depth of pools or physical or hydraulic barriers may have an influence on this preference.
The majority of tagged golden perch remained in the refuge pool throughout the environmental watering actions. Those individuals
 
that did move, went
 
both upstream and downstream fro
m the refuge pool
, with most movements occurring at the peak of flows or on the recession. It is not known whether these movements resulted in spawning, and this can be evaluated in a future assessment of recruitment by the Long term Intervention Monitoring project. However, combined with results from fish community sampling (section 6.1) and fish spawning (section 6.3) the results suggest that the 2013-14 environmental watering did not trigger spawning in this species. There is a 
need to adapt the delivery of environmental water to encourage the breeding of golden perch and silver perch (see flow recommendations).
The majority of common carp 
remained in the refuge pool. Those individuals
 
that did 
move,
 went
 
mainly upstream fro
m the refuge pool
 into 
Yallakool
 Creek.
All acoustically tagged golden perch and some Murray cod returned to the refuge pool at the completion of the recession flows, indicating that these flows were appropriately managed to enable native species to return to refuge habitat and should be incorporated into annual watering priorities.
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Background
Freshwater fish are highly mobile and move in response to biotic (e.g. food availability, competition, predation and maturation) and abiotic (e.g. discharge, water temperature, water quality and habitat availability) stimuli in order to spawn, disperse and feed (Lucas et al. 2001). Flow is a major stimulus for both the migratory and non-migratory movements of freshwater fish (Agostinho et al. 2007, Taylor and Cooke 2012). Elevated flows increase both longitudinal and lateral connectivity in river systems. Within river channels, elevated flows enable movement among previously disconnected pools, and subsequently increase opportunities for fish to colonise new habitats, promoting population mixing (David and Closs 2002). In lowland river systems, newly inundated off-channel habitats are often colonised rapidly as they contain abundant food resources, as well as suitable spawning and rearing habitats for a variety of species (Lyon et al. 2010). 
Given the climatic variability in Australia and the associated unpredictable hydrology, numerous species rely on in-channel flows, rather than off-channel connections, to complete their life cycle (Humphries et al. 1999). For example, golden perch and silver perch are broadcast spawners with no parental care, and spawning can occur anytime from early November to March (Roberts et al. 2008; King et al. 2009). This suggests that both species are in a state of ‘reproductive readiness’ over a specified season and are awaiting suitable environmental conditions to spawn. If these conditions are not achieved minimal spawning may occur or the species will simply resorb gonads. While cohort strength for these species is typically linked with high flow years, in-channel spawning has frequently been documented in non-flood years, and the rapid responses of spawning to rising water levels has led to the classification of these species as being flow dependent specialists (Baumgartner et al. 2013). Spawning events are often preceded by long-distance migrations (Reynolds 1983, Mallen-Cooper and Stuart 2003, O’Connor et al. 2005), thus monitoring the timing of these movements in relation to flows can elucidate the timing and location of spawning events in response to water delivery.
Murray cod exhibit a different life-history strategy, and are typically considered an in-channel specialist that spawns over a predictable period each year (October to December) (Humphries and Lake 2000, King et al 2009). Elevated flows are considered important to promote pre-spawn movements associated with mate search and nest selection, as well as maximising available spawning habitat (Baumgartner et al. 2013). Both Lake (1967) and Cadwallader (1977) warned that large variations in water level over a season can risk nest exposure and egg desiccation. Subsequently, environmental watering strategies have been proposed that maintain stable water levels during the expected spawning period (Baumgartner et al. 2013). Further, given the nest guarding behaviour of males, Murray cod also exhibit predictable, and detectable movements (or lack thereof) immediately post-spawning. The signature associated with this behaviour is frequent movements to identify a nest site, followed by a stationary period of up to 14 days which gives the eggs enough time to hatch (7 days) and for the larvae to become free swimming (another 7 days). Upon hatching, larvae require a food source (typically zooplankton) to survive. Productivity blooms following elevated in-channel flows provide abundant food resources. It is therefore expected that, regardless of whether flows stimulate spawning, year class strength is also a function of discharge (Mallen-Cooper and Stuart 2003) because it serves to both protect nesting habitat and provide a food source for larvae.
Telemetry is a useful method for obtaining detailed movement information on freshwater fish, as it enables quantification of the magnitude, timing and frequency of individual responses to abiotic stimuli such as flows (Taylor and Cooke 2012). In Australia, telemetry has been used to identify the spawning related movements of golden perch in response to flow events (O’Connor et al. 2005). Leigh and Zampatti (2013) used telemetry to quantify the lateral movements of Murray cod during high discharge events. Using telemetry, Simpson and Mapleston (2002) identified a positive correlation between the distance moved by Mary River cod and discharge. Telemetry can also be used to quantify large scale dispersal, including movements to and from refuge habitats, and serves as an additional line of evidence to infer successful spawning (e.g. Thiem et al. 2013, Walsh et al. 2013).
Acoustic telemetry was used to monitor the movements of four species of fish in the Edward-Wakool system in 2013-14 (Murray cod, golden perch, silver perch and common carp) in relation to delivery of Commonwealth environmental water. Fish movement responses were monitored in relation to the delivery of Commonwealth environmental water into Yallakool Creek aiming to: 1) support Murray cod spawning by maintaining inundation of nest sites and to promote larval drift, 2) stimulate spawning in flow dependent species (golden perch and silver perch), and 3) contribute to a gradual water level recession following the cessation of Murray cod nest site inundation flows. 
Methods
To monitor fish movement responses to the delivery of Commonwealth environmental water, a series of 48 passive acoustic receivers were deployed along the Wakool and Edward rivers, and Yallakool Creek (Figure 7). The study focussed on fish movements into and out of the largest refuge pool in the system located at Wakool Reserve, which is at the junction of Yallakool Creek and the Wakool River. This pool is approximately 5 km long, and under low flow conditions provides a valuable refuge pool for a diverse native fish community. Under higher flow conditions fish disperse from this pool throughout the remainder of the system, and if travelling upstream of the refuge pool fish can either occupy or travel through the highly regulated Yallakool Creek which has previously received Commonwealth environmental water, or the Wakool River which typically receives minimal inflows throughout the watering year.
Acoustic telemetry methods were identical to those described in Watts et al. (2013b). Briefly, the acoustic receivers used in this study are a submerged, omni-directional receiver that records the unique identity of a fish swimming within the detection range of the receiver (~500 m) that has previously been fitted with an acoustic tag, along with the time and date of the detection. Multiple acoustic receivers are referred to as an array, and the spatial extent of the acoustic array deployed in this study spanned the Wakool River from Gee Gee Bridge upstream to the Edward River offtake, including the entirety of Yallakool Creek. From here the acoustic array encompassed the Edward River from Stevens Weir upstream to the Murray River Offtake, the length of Gulpa Creek and the lower reaches of Bullatale and Tuppal creeks (Figure 7). The combined distance of waterway covered by the acoustic array in this study was approximately 430 km (Figure 7). The locations of acoustic receivers were strategically selected to monitor key locations within the Edward-Wakool system, including remnant pools, potential barriers, stream confluences and entry and exit of tagged fish from the study area. Acoustic receivers provided continuous data on the locations of tagged fish throughout the monitoring period, and data was retrieved quarterly.
The surgical insertion of additional acoustic tags was not undertaken in 2013-14 as there was an adequate sample size of acoustic tags with active batteries for three of the four focal species (Murray cod, golden perch and common carp) from previous tagging events throughout key movement periods (see Watts et al. 2013b). Acoustic receiver data were downloaded and stored in a purpose built SQL database, and prior to analyses data were screened to remove single detections and ambiguous records (Clements et al. 2005). The movements of each species were reconstructed over time to examine daily habitat use among seasons and in relation Commonwealth environmental water delivery. Specifically, we examined the timing and direction of movements away from the main refuge pool at Wakool Reserve for each species based on the proportion of acoustically tagged fish detected in a location on any given day. When fish moved upstream of the refuge pool, data were further examined to determine waterbody selection between the Wakool River and Yallakool Creek. 
Results and discussion
There were 23 Murray cod, 17 golden perch, 12 common carp and three silver perch detected within the Edward-Wakool acoustic telemetry array from 1 June 2013 until 30 April 2014 (Table 12). These individuals were tagged in previous years (see Watts et al. 2013b) and subsequently remain within the acoustic receiver array. Adequate sample sizes of Murray cod, golden perch and common carp were detected at the beginning of the study period. A substantial decline in the number of tagged individuals of all of these species by January 2014 resulted primarily from battery life expiration (Figure 19). There was an inadequate sample size of silver perch detected throughout this study to base any conclusions upon, and subsequent results focus only on the remaining three species. 

Table 12. Summary of the number of fish implanted with acoustic tags that were subsequently detected within the Edward-Wakool acoustic receiver array during 2013/14 and their associated length and weight. Values are reported as mean ± SE, with range in parentheses.
	Species
	Number detected
	Length (mm)
	Weight (g)

	Murray cod
	23
	630 ± 25
(341–795)
	4085 ± 415
(450–8110)

	golden perch
	17
	426 ± 14
(330–536)
	1506 ± 172
(643–2933)

	common carp
	12
	482 ± 30
(313–632)
	2616 ±  538
(629–6656)

	silver perch
	3
	326 ± 35
(258–376)
	505 ± 136
(260–728)
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Figure 19. The number of fish tagged with acoustic transmitters that were detected within the acoustic array during the study period in 2013-14. 
Murray cod
Murray cod occupied a discrete area at the beginning of the study, and movements out of the Wakool Reserve refuge pool were rare; an unsurprising result given no inflows into the system occurred during this time and the system is largely disconnected, resulting in a series of isolated pools (Figure 20a). Movements out of the refuge pool began in early August 2013, were concurrent with elevated inflows from both Yallakool Creek and the Wakool River, and were generally in an upstream direction. A peak in inflows from both waterbodies prompted the greatest proportion of movements out of the refuge pool, with >30% of the tagged sample moving into upstream habitats associated with this inflow rise in early September 2013, resulting in >60% of the tagged sample occupying upstream habitats during this time. From mid-September onwards for the remainder of the study there was generally from 20–40% of the tagged sample in upstream habitats, with the remaining individuals present in the Wakool Reserve refuge pool. Upon initiation of selection of upstream habitats following high inflows, there was a strong preference exhibited by Murray cod for the upstream reaches of the Wakool River compared with Yallakool Creek, despite comparatively lower flows in the Wakool River as a result of Commonwealth environmental water delivery to Yallakool Creek (Figure 20b). During the nesting period for this species, typically mid-October to mid-December and indicated by the period of maintenance flow delivered to Yallakool Creek, Murray cod were predominantly present within the Wakool Reserve refuge pool or in the upper Wakool River (Figure 20a, b). Recession flows delivered from December 2013 until February 2014 resulted in the return of a small proportion of Murray cod to the refuge pool, although it appears that the majority of these individuals came from the upper Wakool River rather than Yallakool Creek (Figure 20b). 
The timing and duration of the movements exhibited by Murray cod in the Edward-Wakool system, as evidenced through a shift in their habitat use, are consistent with the pre-spawning movements of Murray cod in other locations (e.g. Koehn et al. 2009). This may indicate that fish used the early season freshes to take advantage of newly inundated or connected habitat and are actively seeking out suitable breeding partners or nesting sites. It is difficult to decouple the timing of the movements of Murray cod out of the refuge pool from the elevated inflows given that these inflow peaks have occurred at a similar time over the last two years of monitoring. It is possible that Murray cod are simply taking advantage of the reconnection of pools to opportunistically explore new habitats, as has been demonstrated for other species (e.g. David and Closs 2002). Although it is worthwhile noting that the movements of Murray cod from the Ovens River are consistent with the results observed in this study, with Koehn et al. (2009) identifying long periods of high site fidelity and subsequent rapid movements in late August and early September. Further, the results presented here, including a preference for the refuge pool and the majority of upstream movements resulting in preference of the upper Wakool over Yallakool Creek, are consistent with those identified in 2012-13 under similar flow conditions. The reasons for the preference of the upper Wakool River over Yallakool Creek remain unknown, although highlight the importance of maintaining available habitat in this section of river. It may be that the loading of woody habitat or proportion of overhanging cover or depth is greater in the Wakool River, or there are barriers preventing fish movement into Yallakool Creek, as these are all factors that have been demonstrated to affect microhabitat selection of Murray cod in other rivers and can be more important than hydrologic conditions (Koehn 2009). Although Commonwealth environmental water was delivered to Yallakool Creek to maintain nest site inundation and Murray cod did not exhibit a preference for this location, it is important to note that the majority of the tagged sample resided within the refuge pool during the spawning season. 
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Figure 20. Daily habitat selection of Murray cod shown as the proportion of detected fish in a) either the refuge pool, or upstream or downstream of this location, and b) the upstream located individuals that subsequently selected either Yallakool Creek or the upstream Wakool River. Habitat selected is plotted in relation to time of year and Yallakool Creek (blue line) and Wakool River (red line) inflows (second y-axis). 
Golden perch
Golden perch occupied the Wakool Reserve refuge pool at the beginning of the study when there was a lack of inflows until August (Figure 21a). Similar to Murray cod, golden perch movements out of the refuge pool corresponded with elevated inflows. Selection of upstream habitats was observed as a series of peaks in residency corresponding to an initial rise in inflows in early August, then with a maximum discharge in early September 2013 and after a peak in early October 2013 (Figure 21a). Approximately 25% of the tagged sample occupied locations upstream of the refuge pool in early September 2013. Golden perch also exhibited selection of downstream habitats, with approximately 25% of the tagged sample detected downstream in September 2013, and the timing of these shifts to downstream habitats likewise coinciding with elevated inflows. 
No detectable shifts in the proportion of individuals occupying different habitats occurred in response to the perch pulse flow in Yallakool Creek in November 2013. Upon initiation of shifts to upstream habitats following high inflows, there was initially an equal preference for both the upper Wakool River and Yallakool Creek, although after late September 2013 the majority of golden perch located upstream of the Wakool Reserve refuge pool were in Yallakool Creek, including during delivery of Commonwealth environmental water (Figure 21b). On the 7th September 2013 one golden perch (334 mm, 714 g) moved on the falling limb of the hydrograph from the upper Wakool River into the Edward River and was subsequently detected in Gulpa Creek (receiver station number 47; Figure 7). A second golden perch (396 mm, 1120 g) moved on the falling limb of the hydrograph on the 12th October 2013 from Yallakool Creek into the Edward River and was detected in the upper Edward River at Taylor’s Bridge (receiver station number 38; Figure 7). Three individuals moved into downstream habitats almost concurrently and to similar locations. For example, one golden perch (404 mm, 1085 g) moved from the refuge pool to the vicinity of Thule Creek (receiver station number 4) in late August, and a second individual (420 mm, 1224 g) moved to this location in early September 2013. This second individual moved further downstream the following week and was detected at the Barham-Moulamein Road Bridge (receiver station number 2) along with another tagged golden perch (396 mm, 1120 g). A fourth individual (536 mm, 2933 g) was detected at this location following a rapid downstream movement in mid-October 2013. Return movements of golden perch to the refuge pool from both upstream and downstream habitats coincided with recession flows delivered from December 2013 to February 2014, and by the end of recession flow 100% of the tagged sample of golden perch were located in the refuge pool (Figure 21a, b). 
The timing of movements are consistent with the results from 2012-13, whereby the majority of movements occurred at the peak of flows, or on the falling limb of the hydrograph. These results are also consistent with the findings of Koster et al. (2014) in the Murray and Goulburn rivers. In 2012-13 there was an equal preference of golden perch for both Yallakool Creek and the upper Wakool River, with a late season preference for Yallakool Creek that was consistent with the observations from this study. It is not known whether these movements resulted in spawning, and this can be evaluated in a future assessment of recruitment by the the Long term Intervention Monitoring project (Watts et al. 2014). However, combined with results from fish community sampling (section 6.1) and fish spawning (section 6.3) the results suggest that the 2013-14 environmental watering did not trigger spawning in this species. Consistent with results from 2012-13, the majority of tagged golden perch occupied the refuge pool throughout the study, particularly outside of peaks in discharge. The Yallakool Creek recession flow resulted in return movements from Yallakool Creek to the refuge pool for all tagged individuals. The movement into downstream habitats is consistent with previous studies that demonstrate site fidelity throughout much of the year and a strong homing ability in this species (Crook 2004; O’Connor et al. 2005). O’Connor et al. (2005) observed synchronised downstream movements of a number of tagged golden perch to the junction of the Murray and Wakool rivers which coincided with a rise in both water temperature and discharge.
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Figure 21. Daily habitat selection of golden perch shown as the proportion of detected fish in a) either the refuge pool, or upstream or downstream of this location, and b) the upstream located individuals that subsequently selected either Yallakool Creek or the upstream Wakool River. Habitat selected is plotted in relation to time of year and Yallakool Creek (blue line) and Wakool River (red line) inflows (second y-axis). 

Common carp
Common carp primarily occupied the Wakool Reserve refuge pool (~60% of the tagged sample) at the beginning of the study when there were no inflows, although ~15% were present downstream of the refuge pool and ~25% were present upstream (Figure 22a). Residency outside of the refuge pool was highest during peak discharge in early September 2013 (~80% of the tagged sample), with the proportion of the tagged sample highest in both upstream (~40%) and downstream (~35%) locations during this time. Returns from downstream habitats to the refuge pool occurred by early October 2013, and returns from upstream habitats to the refuge pool ceased by early-January 2014. Common carp exhibited a preference for Yallakool Creek over the upper Wakool River during the study period (Figure 22b). A small proportion of the tagged sample occupied the upper Wakool River during peak discharge in September 2013 and again during the perch flow in mid-November 2013, although outside of these short-term events the majority of the tagged samples were confined to Yallakool Creek, including during delivery of Commonwealth environmental water. By early January 2014, during the recession flows, there were no common carp present upstream of the refuge pool. On the 25th September 2013 one common carp (313 mm, 629 g) moved from Yallakool Creek into the Edward River and remained there. In addition, two common carp moved downstream to Thule Creek (receiver station number 4; Figure 7) and one common carp was detected at Lambrook which is ~8 km upstream of Thule Creek. These movements began as early as August 31st 2013 and all individuals reached respective downstream locations by the 3rd September 2013, with return movements to upstream habitats ending by the 6th September 2013. 

Although peaks in the occupation of upstream and downstream habitats coincided with peaks in discharge in 2012-13, the resulted observed in 2013-14 contrast with previous observations. For example, in 2012-13 there was consistent occupation of upstream habitats by common carp until the cessation of flows in late May 2013 when the entire tagged sample retreated to the refuge pool. There were, however, similarities between years in terms of a preference of common carp for Yallakool Creek. Previous studies of common carp movement have identified complex and often variable movements by this invasive species, ranging from localised movements where individuals exhibit strong site fidelity to wide-ranging movements, with individuals occupying >200 km of river (Jones and Stuart 2009). Subsequently Jones and Stuart (2009) recommended targeting of overwintering habitats as one strategy likely to be effective in reducing adult populations.
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Figure 22. Daily habitat selection of common carp shown as the proportion of detected fish in a) either the refuge pool, or upstream or downstream of this location, and b) the upstream located individuals that subsequently selected either Yallakool Creek or the upstream Wakool River. Habitat selected is plotted in relation to time of year and Yallakool Creek (blue line) and Wakool River (red line) inflows (second y-axis).
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Photo: Larval
 fish species found in the Edward-Wakool River system (
Source
:
Serafini
 and Humphries 2004). 
Key findings
Larval fish s
ampling was conducted fortnightly across the 
four
 
focal rivers
 
plus from Stevens Weir on the Edward River 
from August 2013 to March 2014.
 
Of the 13 fish species known to Edward-Wakool River system, nine species were recorded to have successfully spawned. 
The 
spawning patterns of the Edward-Wakool fish community were independent of the environmental watering actions. The e
nvironmental 
watering actions had no significant effect (either positive or negative)
 
on
 the spawning response
.
The cod maintenance flow in 
Yallakool
 Creek during the Murray cod spawning season did not result in a significantly greater number of larvae in 
Yallakool
 Creek compared to rivers that did not receive environmental water. 
These findings support the 
results
 observed in 2012
-13 and the 
body 
of knowledge that shows that Murray c
od spawn at peak times in November-December, regardless of flow conditions
.
The 
Yallakool
 Creek perch flow did not trigger a golden and silver perch spawning response in the monitored reaches, as evidenced by the absence of larvae or eggs. It is possible that these species spawned elsewhere in the system but were undetected by the current monitoring. 
Future assessment of fish recruitment undertaken as part of the Long Term Intervention Monitoring project may determine if these species spawned in 2013-14.
For f
low-dependent species
,
 such as golden and silver perch, it is likely that the magnitude and duration of the water actions was not great enough to promote spawning
. 
There is a 
need to adapt the delivery of environmental water to encourage the breeding of golden perch and silver perch (see flow recommendations).
Environmental watering actions that target the inundation of in-channel 
geomorphological
 features and increase the area of 
slackwater
 available to small bodied fish as
 spawning and nursery grounds are
 likely to be advantageous to these species.
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Background
One of the key objectives of the 2013-2014 watering actions in the Edward-Wakool system was to provide improved spawning conditions for native fish. The delivery of the Yallakool Creek perch pulse flow was aimed at illiciting a spawning response from golden and silver perch, as the spawning, or magnitude of spawning for these species has been well documented to be associated with flow. Murray cod are a long-lived species whose spawning is independent of flow conditions, but whose recruitment may benefit from flow events. The delivery of the Yallakool Creek cod maintainence flow was aimed at providing stable continuous flow conditions for Murray cod during their breeding season. Monitoring of the abundance and diversity of larval fish was undertaken from August 2013 to April 2014 to evaluate the spawning response of of the Edward-Wakool fish assemblage to specific Commonwealth environmental watering actions.
Questions
1) Does the delivery of a pulse flow to the Yallakool River in November result in a golden perch and silver perch spawning response (Yallakool perch pulse flow)?
2)  Does the delivery of a sustained flow in the Yallakool River during the Murray cod spawning period result in a significantly greater number of larvae compared to rivers that did not receive environmental water (Yallakool maintainence and recession flows)? 
3) Does the delivery of within channel flows benefit the spawning of small-bodied fish species? 
4) Was the overall production of fish larvae across the 2013-2014 spawning season significantly greater in the rivers receiving environmenental watering actions compared to those that did not? (All environmental watering actions)

Methods
Larval fish sampling was conducted fortnightly across the four focus rivers and the Edward River at Stevens Weir from August 2013 to March 2014. Colligen Creek and Yallakool Creek received environmental freshes, the Wakool River and Little Merran Creek did not receive environmental freshes and the Edward River was included as it was the source of the environmental water delivered to Colligen Creek and Yallakool Creek. For detailed methods description see Watts et al. (2013b), but briefly, three light traps were set at five sites within each river fortnightly, and additional targeted drift net sampling was undertaken to sample for golden and silver perch eggs/larvae before, during and after the Yallakool perch pulse flow in the Yallakool Creek. Colligen Creek and Wakool River were also sampled using drift nets during the time of the pulse perch flow in order to act as controls. 
Data analysis
An asymmetrical BACI (before-after, control-impact) (Underwood 1991) statistical design was used to test the effect of specific 2013-2014 environmental water actions on larval abundance in the Edward-Wakool river system. Differences in mean number of larvae between control/impact rivers and before/during/after environmental freshes were evaluated statistically for each watering action using two-way mixed effects analysis of variance (ANOVA). Because there were multiple sampling times used to represent before, during and after environmental flows, and multiple rivers used as ‘Control’ rivers, sampling trip (random effect) was nested within Period (fixed effect, three levels: before, during and after), and river (random effect) was nested in Treatment (fixed effect, two levels: control rivers, impact rivers). Impact rivers received environmental freshes, while Control rivers were those that did not receive environmental water. For this analysis particular interest is in the Period x Treatment interaction term, which indicates a significant effect of the environmental watering action. Visual assessment of mean (±1SE) biomass plots, grouped by Period and Treatment, were used to confirm if the significant interaction term was positively or negatively associated with the environmental watering action. The dates and rivers used to detect changes in fish larvae was consistent with the approach used to assess aquatic vegetation and shrimp responses. The null hypothesis for all watering actions was that mean larval abundance of native fish species in the rivers which received environmental water would not be significantly different to the control rivers. 
To test if the production of larvae (total abundance) was significantly different across the 5 rivers across the entire spawning season, total larval abundance was analysed for all species (where there was enough data) using a one way ANOVA with river as the grouping variable. When significant differences were indicated, post hoc pairwise comparisons were undertaken to determine differences between the Rivers. Response variables were log-transformed prior to statistical analyses when necessary to normalise data and stabilize variances. Statistical analyses were carried out using the freeware R and the R package NLME (R Development Core Team 2013).
Results and discussion
A total of 9,728 larval fish, representing 9 fish species, were collected in the 2013-14 monitoring study (Table 13). Six of the 9 fish species collected as larvae were native species. Similiarly to 2012-2013 spawning year (Watts et al. 2013b), small-bodied fish species made up the majority of larvae collected across the five rivers, and were represented by Australian smelt (Retropinna semoni, n=5238), carp gudgeon (Hypseleotris spp., n=3341) and flathead gudgeon (Philypnodon grandiceps, n=352), Murray River rainbowfish (Melanotaenia fluviatilis, n=1) and gambusia (n=1). No larvae of unspecked hardyhead were collected, despite being found in previous years throughout the Edward-Wakool River System, albeit in small numbers (Watts et al. 2013b).
Large-bodied, long-lived ‘equilbrium’ species (sensu Humphries et al. 1999) that spawned in the Edward-Wakool River system were Murray cod (Maccullochella peelii, n=401), river blackfish (Gadopsis marmoratus, n=6), common carp (Cyrpinus carpio, n=102), and redfin perch (Perca fluviatilis, n=2). There was no evidence of flow dependent ‘periodic’ species (sensu Humphries et al. 1999) such as silver perch (Bidyanus bidyanus) or golden perch (Macquaria ambigua) spawning (Table 13).
Table 13. Catch summary of fish larvae collected using light traps and drift nets from rivers in the Edward-Wakool system during the 2013-2014 spawning season. 
	
	Light traps
	
	Drift nets

	Species
	Col.
	Yal.
	Wak.
	L.Mer.
	Edw.
	Total
	
	Col.
	Yal.
	Wak.
	Total

	Native
	
	
	
	
	
	
	
	
	
	
	

	Australian smelt
	374
	200
	199
	245
	4220
	5238
	
	1
	0
	0
	1

	carp gudgeon
	262
	59
	44
	395
	2581
	3341
	
	0
	0
	0
	0

	Murray cod
	15
	214
	126
	9
	37
	401
	
	12
	10
	7
	29

	flathead gudgeon
	123
	3
	15
	81
	130
	352
	
	0
	0
	0
	0

	river blackfish
	0
	0
	6
	0
	0
	6
	
	0
	0
	0
	0

	Murray River rainbowfish
	0
	1
	0
	0
	0
	1
	
	0
	0
	0
	0

	silver perch
	0
	0
	0
	0
	0
	0
	
	0
	0
	0
	0

	golden perch
	0
	0
	0
	0
	0
	0
	
	0
	0
	0
	0

	unspecked hardyhead
	0
	0
	0
	0
	0
	0
	
	0
	0
	0
	0

	Introduced
	
	
	
	
	
	
	
	
	
	
	

	Common carp
	13
	2
	31
	24
	32
	102
	
	42
	113
	6
	161

	Redfin 
	0
	0
	0
	1
	1
	2
	
	0
	0
	0
	0

	gambusia
	1
	0
	0
	0
	0
	1
	
	0
	0
	0
	0

	oriental weatherloach
	0
	0
	0
	0
	0
	0
	
	0
	0
	0
	0

	Unidentified
	175
	39
	33
	6
	30
	283
	
	0
	0
	0
	0

	Total
	963
	518
	454
	762
	7031
	9728
	
	55
	123
	13
	191

	%
	9.9
	5.3
	4.7
	7.8
	72.3
	
	
	
	
	
	



Seasonal timing in appearance of larval fish
The seasonal timing and peaks of larval production throughout the spawing period followed similar trends to the 2012-2013 spawning period (Watts et al. 2013b). The duration and timing of the spawning period for small-bodied species including Australian smelt, carp gudgeon and flathead gudgeon differed across rivers (Figure 23). Australian smelt larvae were collected early the spawning season (14-15°C), occurring from September to January. For the other abundant species, carp gudgeon, Murray cod, flathead gudgeon and carp, average larval abundance peaked during late spring and early summer (October to December 2013) (Figure 23). Carp gudgeon had the longest spawning period of up to 6-7 months in most rivers, with the exception of Yallakool Creek where larvae were only collected for for months between December and March 2014 (Figure 23). Temperatures noted at the onset of larvae first collected varied across the rivers; larvae were first found in Colligen Creek when temperatures were 16°C but not until 22°C in Yallakool Creek. Flathead gudgeon where generally the last species to commence spawning, and had a narrow spawning window than carp gudgeon, spawning between 2-3 months between October to January, when temperatures were 19-20°C (but up to 26°C in the Wakool River) (Figure 23). 
Murray cod larvae were found in all the rivers between October and January, with abundance peaking in mid October to mid November; again, showing similar trends to the 2012-2013 spawning period (Figure 24). The spawning trends of carp were also consistent with the 2012-2013 spawning period, with larvae appearing through the system from September through to the start of December, but most abundant in October with temperatures between 16-20°C.
Difference in total larval production across rivers 
The total production of fish larvae over the 2013-2014 spawning period was significantly different across the five rivers for Australian smelt, carp gudgeon, Murray cod, and flathead gudgeon (Table 14). Australian smelt larvae, the most abundant species, was found in significantly greater numbers in the Edward River weirpool (d.f=4,24, F-test=9.44, p=0.001) (Figure 25i). This trend is consistent with findings from the 2012-2013 spawning season (Watts et al. 2013b). Carp gudgeon larvae were found in significantly greater numbers in the Edward weirpool, followed by Little Merran Creek (d.f=2,24, F-test=6.55, p=0.002)(Figure 25ii). Murray cod larvae were signficiantly more abundant in both Yallakool Creek and the Wakool River compared to the other rivers (d.f =4, F-tst=14.89, p=<0.001), but there was no significant difference between these two rivers, despite the Yallakool Creek receiving environmental water (Figure 25iii). There was a signficiant difference in larval abundance flathead gudgeon across the five rivers (df=4, 24, F-test=0.007), with greatest numbers collected in Edward and Colligen, and least in the Yallakool River (Figure 25iv). Carp were the only species whose larvae abundances were not significantly different across rivers (df=4,24, F-test=2.41, p>0.05). 


[image: ]
Figure 23. Occurrence (blue bars) of the fish larvae sampled in Colligen Creek, Yallakool Creek, Wakool River and Little Merran Creek from August 2013 to April 2014, along with discharge (solid line) and temperature (dashed line) profile
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Figure 24. Mean larval fish abundance (±1SE) for the five most common fish species in the Edward-Wakool river system over the 2013-2014 spawning season. Coloured bars represent environmental water delivery;       = Yallakool cod maintenance flow,        = Yallakool perch pulse flow,       = Yallakool recession flow, and        = Colligen-Niemur continuation flow. The Wakool River and Little Merran Creek did not receive environmental water and the Edward River (weirpool) was the source of the environmental water. Note Y axes vary.

Table 14. Results of one-way anova comparing total mean abundance of larval fish species with River as the main factor. Fish species with P values <0.05 indicates there was a significant difference in larval fish abundance across rivers.
	Fish species
	df
	F-test
	p

	Australian smelt
	4,24
	9.44
	0.001

	carp gudgeon
	4,24
	6.55
	0.002

	Murray cod
	4,24
	14.89
	<0.001

	flathead gudgeon
	4,24
	4.83
	0.007

	carp
	4,24
	2.41
	0.083
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Figure 25. Mean total abundance (±1SE) of larvae sampled in the 2013-2014 spawning season in the Edward Wakool River system, for i) Australian smelt, ii) carp gudgeon, iii) Murray cod, iv) flathead gudgeon and v) carp. Note Y-axes vary. Letters denote homogenous sub-set groups based on Tukey’s post hoc significance tests.  There was no significant difference in carp larval abundance across the focus rivers.

Environmental watering event-based analysis
Yallakool Creek cod maintenance and recession flows
The cod maintenance flow in Yallakool Creek from October to December 2013 coincided with the spawning period for Murray cod. Murray cod larvae were found in all 5 rivers, and appeared from mid-October through to early January 2013 (Figure 23). The total abundance of Murray cod larvae collected were greatest in Yallakool Creek (n=214) and the Wakool River (n=126) and lowest in the Edward River (n=37), Colligen Creek (n=15) and Little Merran Creek (n=9). Despite the delivery of the maintenance flow in Yallkool Creek, mean numbers of Murray cod larvae were not significantly greater in Yallakool Creek compared with rivers that did not receive environmental water (Wakool River and Little Merran Creek) (CI: 1,139, F-test=1.698, p>0.05, Table 15). While a significant interaction between Control: Impact Rivers and Time Period was detected (Table 15), this was due to mean abundance of Murray cod in Little Merran Creek being very low both during and after the environmental flow compared with the higher numbers of larvae observed in both Yallakool Creek and Wakool Creek during the time of the environmental flow (Figure 26c).
There was no significant change in Australian smelt, carp gudgeon or flathead gudgeon larvae abundances in Yallakool Creek during the maintenance flow or recession flow compared to control rivers (Table 15, Figure 26). Statistical analyses were not peformed for the other fish species due to the low numbers sampled. 
Yallakool Creek perch pulse flow
We found no evidence to indicate that golden perch or silver perch spawned in response to ‘perch’ flow delivered to Yallakool Creek in November 2013. No golden or silver perch eggs, larvae or juveniles were found in the targeted drift netting activities, or the fortnightly light trapping. Unlike the 2012-2013 spawning season where two silver perch larvae were collected in Little Merran Creek independently of environmental flows, spawning activity for this species was not detected across the Edward-Wakool River system this year. 
Larval abundances of carp gudgeon, Australian smelt, Murray cod and flathead gudgeon were not found to be significantly different in the Yallakool River before and after then delivery of Yallakool perch pulse flow (Table 15, Figure 27). Statistical analyses were not peformed for the other fish species due to the low numbers sampled. 


Table 15. Statistical results for 2 way mixed-effects Analaysis of Variance (ANOVA). A significant interaction between the two fixed factors: Period (before, during, after) and CI (control rivers, impact rivers) indicates that the mean abundance of larval fish within Impact Rivers and Control rivers responded different across time. An effect due to the watering action could be determined if the significant interaction was due to mean larval abundance changing in the impact river as compared to the control river, not vise-versa (See Figures 67-69).
	
	Species
	Main effect
	d.f
	F-test
	p-value

	
	
	
	
	
	

	
	
	
	
	
	

	Perch pulse flow: Yallakool creek
	
	
	
	

	
	carp gudgeon
	Period (B-A)
	1,55
	3.028
	0.087

	
	
	CI (C-I)
	1,55
	0.420
	0.519

	
	
	Period*CI
	1,55
	1.530
	0.221

	
	Australian smelt
	Period (B-A)
	1,55
	4.314
	0.042

	
	
	CI (C-I)
	1,55
	0.328
	0.568

	
	
	Period*CI
	1,55
	0.091
	0.763

	
	
	
	
	
	

	
	Murray cod
	Period (B-D-A)
	1,55
	4.400
	0.040

	
	
	CI (C-I)
	1,55
	1.539
	0.219

	
	
	Period*CI
	1,55
	0.024
	0.877

	
	flathead gudgeon
	Period (B-D-A)
	1,55
	1.413
	0.329

	
	
	CI (C-I)
	1,55
	0.214
	0.645

	
	
	Period*CI
	1,55
	1.278
	0.263

	
	carp
	n/a
	
	
	

	Cod maintenance and recession flows: Yallakool creek

	
	carp gudgeon
	Period (B-D-R)
	2,139
	5.440
	0.005

	
	
	CI (C-I)
	1,139
	0.281
	0.596

	
	
	Period*CI
	1,139
	0.101
	0.903

	
	Australian smelt
	Period (B-D-R)
	2,139
	13.064
	<0.001

	
	
	CI (C-I)
	1,139
	0.012
	0.9105

	
	
	Period*CI
	1,139
	2.906
	0.058

	
	Murray cod
	Period (B-D-R)
	2,139
	10.573
	<0.001

	
	
	CI (C-I)
	1,139
	1.698
	0.194

	
	
	Period*CI
	1,139
	4.038
	0.019

	
	flathead gudgeon
	Period (B-D-R)
	2,139
	0.902
	0.408

	
	
	CI (C-I)
	1,139
	0.946
	0.332

	
	
	Period*CI
	1,139
	0.358
	0.699

	
	carp
	n/a
	
	
	

	
	
	
	
	
	

	Colligen-Neimur continuation flow

	
	carp gudgeon
	Period (B-D-A)
	2,73
	0.438
	0.647

	
	
	CI (C-I)
	1,73
	1.194
	0.278

	
	
	Period*CI
	2,73
	1.049
	0.355

	
	Australian smelt
	n/a
	
	
	

	
	Murray cod
	n/a
	
	
	

	
	flathead gudgeon
	n/a
	
	
	

	
	carp
	n/a
	
	
	










[image: ]
Figure 26. Mean abundance (±1SE) of fish larvae present in the Edward-Wakool river system during the Yallakool Creek cod maintenance and recession flow from October 2013 to January 2014; a) carp gudgeon, b) Australian smelt, c) Murray cod and d) flathead gudgeon. The Wakool River and Little Merran Creek did not receive environmental water and were used as controls. 
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Figure 27. Mean abundance (±1SE) of fish larvae present in the Edward-Wakool River system immediatley before (B) and after (A) the delivery of the Yallakool Creek ‘perch pulse flow’ in November 2014 ; a) carp gudgeon, b) Australian smelt, c) Murray cod and d) flathead gudgeon. This flow was aimed at eliciting a golden and silver perch spawning response. The Wakool River and Little Merran Creek did not receive environmental water (controls). 
Colligen-Nieumur continuation flows
Carp gudgeon were the only species still spawning in the Edward-Wakool River system in Feburary 2014 when the Colligen-Neiumur continuation flow was delievered (note: Flathead gudgeon larvae were sampled in the Colligen Creek at this time, but only a small number of individuals were collected). Statistical comparisons of Before-During-After, and Control-Impact Rivers revealed there was no significant change in carp gudgeon abundances either during or after the continuation flow compared to th ‘control’ rivers that did not receive environmental water (df=2,73, F-test=1.049, p>0.05, Table 15, Figure 28).
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Figure 28.  Mean abundance (±1SE) of carp gudgeon larvae present in the Edward-Wakool River system before, during and after the time that Colligen-Neimur Creeks received a ‘continuation flow’ in  February 2014. The Wakool River and Little Merran Creek did not receive environmental water, and were used as controls. Significant differently responses between control and impact rivers, before, during and after the watering action are marked with an asterisk.

Summary
Environmental watering actions in the Edward-Wakool system in 2013-14 had no significant effect (either positive or negative) on the spawning response of the Edward-Wakool fish community. 
In-channel freshes targetting golden and silver perch spawning in the Edward-Wakool River system did not result in eggs or larvae being detected. Further lines of evidence (for example, fish movement section 6.2 and the capture of juveniles at the end of the spawning season in April section 6.1), help to provide a more definitive conclusion as to whether or not these targeted pulses result in spawning responses of these two species. Spawning of golden perch was also not detected in 2012-2013. For flow-dependent species such as golden and silver perch, it is likely that the magnitude and duration of the water actions was not great enough to promote spawning. 
Sustained and stable flows were maintained in the Yallakool Creek in November 2013-February 2013-4, with the aim of enhancing the spawnng and recruitment of Murray cod. A similar water action was delivered and monitored in November 2012, and no significant differences in Murray cod were detected between Yallkool Creek and the nearby Wakool River, which did not receive environmental flows at this time. The results in 2013-14 support the results observed in 2012-13, where the number of Murray cod larvae collected in Yallakool Creek was not significiantly greater than that in the Wakool River that did not receive environmental water. These findings support the strong body of knowledge that shows Murray Cod spawn at peak times in November-December, regardless of flow conditions (Rowland 1983; Humphries et al. 2005; Koehn and Harrington 2006; King et al. 2009).
Conditions that promote the number of adult breeding pairs to nest in rivers, will likely play a large role in explaining the numbers of larvae observed across the rivers studied. Results from the fish movement work conducted over 2012-2013 and 2013-14 indicate that Murray cod show a preference for the upper Wakool River over Yallakool Creek, and that discharge may not be a key determinant in nest site location for this species. Instead, other habitat variables such as the abundance of habitat structure such as woody debris may be important for Murray cod (Koehn 2009). The delivery of environmental flows to the upper Wakool River would provide an opportunity to better understand the effects of river and flow on spawning responses, as environmental flows have only been delivered to the Yallakool Creek to date. 
Larval abundance of opportunistic species did not appear to benefit from the environmental flows delivered to the system. Those species that spawned, such as carp gudgeon, Australian smelt and flathead gudgeon, are common and widespread throughout the Murray-Darling Basin. Other species such as unspecked hardyheads and Murray rainbowfish, which while found to have spawned in low numbers during the 2012-2013 spawning period, were not captured as larvae during the 2013-2014 survey period. Slackwater and slowwater environments are considered important for the spawning and recruitment of many small bodied species (Humphries et al. 2010). For low-flow specialists, such as many of the smaller bodied native fish species, it may be that unless watering actions can provide a significant increase in low flow habitats (such as inundated slackwaters, backwaters and off channel wetlands) for periods of time that allow the spawning, hatching and rearing of larvae to take place, then the spawning response of such species in relation to watering actions will also be limited (Humphries et al. 1999). We hypothesise that environmental flows that target the inundation of in-channel geomorphological features and increase the area of slackwaters available to small bodied fish as spawning and nursery grounds is likely to be advantageous to these populations. 
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Key findings
Recruitment was assessed for carp 
gudgeon
, 
one of five small-bodied fish species found in the Edward-Wakool system
. Carp 
gudgeon
 were a target species because larvae and juveniles of this species have previously shown evidence of positive changes in abundance following environmental watering actio
ns in the Edward-Wakool system.
Juvenile golden perch, silver perch
 and M
urray cod
 were not sampled in large enough numbers to detect whether environmental watering actions influenced recruitment of these specie
s in the Edward-Wakool system. To ensure there is adequate numbers of juveniles to evaluate the effect of environmental watering on recruitment of these species, future monitoring will include 
targetted
 sampling to ensure an adequate number of young of year recruits are sampled (Watts et al. 2014).
Recruitment of carp 
gudgeon
 occurred between August 2013 and March 2014, peaking in November-January, in all rivers regardless of receiving environmental water. In 2013-14 annual recruitment of carp 
gudgeon
 was not positively or negatively affected by environmental watering actions in 
Yallakool
 Creek 
and 
Colligen
 Creek. 
This result is different to previous years, where an increase in the abundance of larvae and juveniles was detected in response to environmental watering in 
Colligen
 Creek in 
Spring
 (Watts et al. 2013a; 2013b).
Dissimilar recruitment responses to environmental watering actions among years may be related to differences in the peak magnitude of flows or differences in the relationship between discharge and area of inundation in different rivers. This will require an evaluation of spawning responses across multiple years.
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Background
One objective of environmental watering in the Edward-Wakool system is to provide recruitment outcomes for native fish. Once reproduction has occurred, the ultimate measure of spawning success is the number of individuals that survive to juvenile or adult stages; this referred to as recruitment. Recruitment in fish that live in flowing water environments is tightly coupled with historical patterns of the natural flow regime associated with flooding, drought and more regular seasonal cycles (Lytle and Poff 2004). The flow regime is a driver of energy production, and creates slack-water habitat and inundates back-water areas (Bunn and Arthington 2002; Price et al. 2013) which influence recruitment of riverine fishes (King et al. 2013). Given the relatively high reproductive output of fishes, small changes in recruitment success can result in cascading effects on populations, communities and the ecosystems they inhabit. Therefore, improving management of regulated river flow regimes and environmental watering actions has potential to benefit native fish communities via changes in recruitment (see Rayner et al. 2009; King et al. 2009; 2013; Rolls et al. 2013). Likewise, the mismanagement of river flow can be detrimental to native fish communities due in large part to changes in recruitment required to sustain populations (see Humphries et al. 1999; Humphries et al. 2002). It is well-established that most species of fish in the Murray-Darling Basin do not require over-bank flows or changes in water level to initiate spawning (Humphries et al. 1999), but nonetheless recruitment of all species may be affected by alterations to the natural flow regime (King et al. 2013).
The aim of this section is to evaluate whether environmental watering actions affected recruitment of fish in the Edward-Wakool system. 
Juvenile golden perch, silver perch and Murray cod were not sampled in large enough numbers in the fish community surveys (see section 6.1) to detect whether environmental watering actions influenced recruitment of these species in the Edward-Wakool system. To ensure there is adequate numbers of juveniles to evaluate the effect of environmental watering on recruitment of these species, future monitoring will include targetted sampling to ensure an adequate number of young of year recruits are sampled (Watts et al. 2014).
The present section, therefore, focuses on whether recruitment of a small-bodied native fish, carp gudgeon (Hypseleotris spp.), was influenced by environmental watering actions in the Edward-Wakool system in 2013-14. Carp gudgeon are considered to be a foraging generalist (Baumgartner et al. 2013) whereby recruitment is expected to be highest under low-flow conditions (Humphries et al. 1999). However, previous years of monitoring in the Edward-Wakool system (Watts et al. 2013a; 2013b) have shown that carp gudgeon larvae and juveniles have benefitted from environmental watering actions that potentially increased the availability of slack-water habitat with-in the main channel. Here we test whether environmental watering actions in 2013-14 influenced annual recruitment of carp gudgeon.
Q. Was annual recruitment of carp gudgeon different among rivers that did or did not receive environmental water in 2013-14?
Methods
For purposes of this report, recruitment is defined as the relative abundance of carp gudgeon entering the juvenile stage of development between a standard length (SL) of 10 to 15 mm. This length range was selected to represent the number of individuals surviving through the critical period early life-history phases from eggs through larval development, whereby greater than 99.4% of mortality is estimated to occur in carp gudgeon (McCasker 2009). The expectation was that changes in early life-history survival affected by environmental watering actions would be detected by changes in relative abundance of recruits (10 to 15 mm SL).  
Recruits were collected as part of the fortnightly light trap sampling ( see section 5.3) undertaken at five sites in each of the four focus rivers (Yallakool Creek, Wakool River, Colligen Creek and Little Merran Creek) in the Edward-Wakool system. All carp gudgeon were staged, enumerated and measured to the nearest 0.01 mm (SL or TL). A sub-sample (n=50) of carp gudgeon recruits were measured for both SL and TL to develop a linear regression (SL =y0 + b X TL) conversion equation.  Otoliths (sagitta) were extracted from 20-25 juvenile carp gudgeon between 10-15 mm SL from each river sampled thoughout the year between August 2013 and April 2014. 
Otoliths were fixed to a microscope slide with the sulcus facing up using CrystalBond thermoplastic glue. The sagittal plane was polished flat with a grinding wheel fitted with a 15 µm or 6 µm wet polishing pad or with 6 µm, 3 µm and 1 µm dry lapping film. Microincrements were counted from the hatch check out to the most anterior edge (Figure 29) using a compound microscope and 20X or 40X objective.  In sections where a hatch check was not apparent, microincrement counts started at the mean radius of hatch checks determined from otoliths where a check was discernable. Recruitment sampling did not target or sample adults approaching the asymptotic length of species’, therefore it was not appropriate to attempt fitting standard fisheries growth curves, such as Gompertz or von Bertalanffy models. Other regression models, including exponential growth, power functions, and polynomial functions, were fitted to daily age-length data but a standard linear regression (Days post-hatch =y0 + b X SL) provided the best fit. 
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Figure 29. Image of a typical carp gudgeon otolith illustrating an estimated 43 daily microincrements post-hatch at 12.0 mm SL.  
Daily ages, post-hatch, were estimated for all recruits using age-length linear regressions fitted for each river. Estimated daily ages of all recruits were rounded to the nearest whole number and subtracted from the Julian mid-week date of capture in order to assign individual recruit hatch dates. An annual index of carp gudgeon recruitment was calculated for each river using the median number of recruits sampled across the five sites and peak recruitment months (November-January). Recruits with estimated hatch dates falling before 1 August 2013 were excluded from the analysis to avoid confounding effects fish hatched in previous environmental watering years. Carp gudgeon recruits were present in samples collected over eight months (August – March) and five sites per river which represented 40 replicates per river for annual recruitment indices. A Generalized Linear Mixed Model (GLMM; Zurr et al 2009) was used test whether there were significant differences in recruitment among months and rivers for the 2013-14 year. Site was incorporated as a random effect because differences within rivers were not of interest to this study. Fixed effects included River and Month. The GLMM fitted values of abundance were used to represent the recruitment indices for each river and month for the 2013-14 year. 
Environmental watering actions in 2013-14 were undertaken throughout October and November in Yallakool Creek.  If environmental watering actions influenced annual recruitment, we expected the recruitment index of carp gudgeon in Yallakool Creek to be consistently higher or lower than each of the other rivers (Wakool; Colligen Creek; Little Merran Creek) which did not receive environmental water. The null hypothesis tested was that carp gudgeon recruitment in Yallakool Creek was not different to the Wakool River, Colligen Creek or Little Merran Creek.

Results and discussion
Aged carp gudgeon recruits (n=1024) ranging in length from 9.5-11.9 mm SL were a mean of 31 ± 0.1 SE days old across rivers and months for the 2013-14 year. Microincrements in otoliths were clearly apparent (Figure 29) and readable in most sections. Approximately 13% of carp gudgeon otoliths, were considered unreadable and not used in analyses due to poor preparation and individual variation in clarity. Unreadable otolith sections occur in all fish aging studies regardless of the species or researcher, and the percentage of unreadable otoliths may be reduced in the future as preparation skills and methods improve. We assumed that the potential bias introduced as a result of excluding unreadable otoliths was likely to be less than the known bias of including unreadable samples. All length measurements were converted to a SL using the equation: SL =0.564 + 0.802 X TL which was a highly predictable linear relationship (R2=0.99; DF=49; P<0.0001).
A standard linear regression (R2=0.66; DF=54; P<0.0001) provided the best fit to age-length data (Figure 30). Confidence intervals (5% and 95%) on regressions fitted to age-length data (Figure 30) had precision of ± 16.1 days which encompassed age-length estimates for previous years in the Edward-Wakool system (Watts et al. 2013a; 2013b). Confidence intervals and estimates of precision allowed individual recruit hatch dates to be assigned to a particular month with a 95% level of confidence. The linear regression fitted to age-length data (Figure 30) was used for back-calculating recruit hatch dates to compare recruitment among months and rivers for the 2013-14 year.


Figure 30. Estimated daily age-length regression (R2=0.66; DF=54; P<0.0001) for carp gudgeon recruits sampled in the Yallakool Creek, Wakool River, Little Merran Creek and Colligen Creek between August 2013 and April 2013. Redlines lines represent 95% confidence bands.  Days post-hatch =-21.9129 + 4.9860 X SL 
There were significant differences in carp gudgeon recruitment among rivers and months for the 2013-14 year (Table 16). A total of 1024 carp gudgeon recruits were sampled with a mean ± SE abundance per site ranging from 1.3 ± 0.7 to 12.6 ± 4.3 in Wakool River and Colligen Creek respectively. Recruitment index values among rivers followed the same general pattern with highest values in Colligen Creek and all other rivers with significantly lower recruitment (Table 16). Recruits hatched between August and March in all rivers (Figure 31) with peaks occurring between November and January. Monthly means number of recruits ranged from 0.55 ± 0.55 in March to 24.5 ± 8.3 in December. Monthly recruitment index values peaked in November and December while all other months showed equally low levels of recruitment (Table 16, Figure 32). The seasonal timing and duration of carp gudgeon recruitment in 2013-14 was similar to the past two years in the Edward-Wakool (Watts et al. 2013a; 2013b) and consistent with previous studies in mid-Murray River (Beesley et al. 2012). Most recruits hatch during late spring and early summer despite larvae and juveniles being present across a wider range of months. Elevated recruitment between November and January may be related to increases in temperature-specific spawning activity or to increases food (zooplankton) availability (see Humphries et al. 2013).

Table 16. Recruitment index values for carp gudgeon in the Edward-Wakool system for 2013-14. Higher recruitment index values estimated by the Generalized Linear Mixed Model indicate more recruits hatched by river or month.
	Factor
	N
	Recruitment index values
	SE
	P-value

	Colligen
	507
	8.0
	4.6
	NS

	Yallakool
	83
	-10.6
	3.5.
	<0.05

	Wakool 
	50
	-11.4
	3.5
	<0.05

	Little Merran
	384
	-3.0
	3.0
	<0.05

	Sept.
	22
	-0.7
	5.0
	NS

	Oct.
	1
	-1.8
	5.0
	NS

	Nov.
	282
	12.3
	5.0
	<0.05

	Dec.
	490
	22.7
	5.0
	<0.0001

	Jan. 
	115
	3.4
	5.0
	NS

	Feb.
	65
	1.5
	5.0
	NS

	March
	11
	-1.3
	5.0
	NS



We conclude that environmental watering actions in Yallakool Creek had no significant effect (either positive or negative) on annual recruitment of carp gudgeon in the Edward-Wakool system during 2013-14. Colligen Creek had the highest recruitment among all rivers and this occurred during bi-modal peaks in September and December irrespective of an environmental watering action that started in March 2014 (Figure 31). The annual recruitment index for carp gudgeon in Colligen Creek was significantly higher than Yallakool Creek, the Wakool River and Little Merran Creek (Table 16, Figure 32). A small peak in carp gudgeon recruitment in Yallakool Creek overlapped the timing of environmental watering (Figure 31) but this event had no significant influence on annual recruitment compared to other rivers (Table 16). This result is different to past years (Watts et al. 2013a; 2013b), whereby a majority of carp gudgeon recruits hatched during November environmental watering actions. Another peak in recruit hatch dates in Yallakool Creek during 2013-14 occurred in January, which was later in the year than peaks in rivers which did not receive environmental water and later compared to previous years (Watts et al. 2013a; 2013b).
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Figure 31. Back-calculated number of recruits (n=1024) hatched per day between August 2013 and April 2014. Black lines represent daily discharge and coloured peak lines represent recruitment. Horizontal bands represent the timing of environmental watering actions in Colligen and Yallakool Creeks. 

[image: Fig 4_recruit index]
Figure 32. Recruitment index values for carp gudgeon in the Edward-Wakool system for 2013-14.  Higher recruitment index values estimated by the Generalized Linear Mixed Model indicate more recruits hatched by river (top graph) or month (bottom graph). 

The observation that environmental watering actions in Yallakool Creek during late spring 2013-14 had no effect on carp gudgeon recruitment is different to previous years, where changes in abundance of larvae and juveniles was detected in response to environmental watering in Colligen Creek in Spring (Watts et al. 2013a; 2013b). In 2011-12 an environmental watering action in Colligen Creek during November peaked at approximately 900 ML/d, and this resulted in elevated larval and juvenile carp gudgeon abundances (Watts et al. 2013a). Similar magnitude and timing of environmental watering actions in Colligen Creek in 2012-13 also resulted in changes in carp gudgeon recruitment or increased downstream dispersal from upstream sources (Watts et al. 2013b). 
River discharge influences the size, timing and duration of slackwater habitat (Price et al. 2013) which is thought to be important to fish recruitment. One possible explanation for the lack of recruitment response in 2013-14 is that environmental watering actions did not provide adequate slackwater habitat in Yallakool Creek required to benefit native fish recruitment beyond that provided under normal regulated river discharge conditions. Previous two dimensional hydraulic modelling of discharge in these rivers showed that the relationship between discharge and wetted surface area differed between rivers, possibly due to differences in river geomorphology. A statistical analysis conducted across years, rivers, environmental attributes (eg. temperature, primary productivity, availability of slackwater habitat) and discharge patterns will be required to determine factors explaining recruitment success of carp gudgeon in relation to environmental watering actions.
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Key findings
Instream
 aquatic vegetation and riverbank vegetation surveys were undertaken from September 2013 to March 2014. 
A
quatic vegetation
There was a significant increase in the percent cover of submerged aquatic vegetation in 
Yallakool
 Creek between September and December 2013 during the cod maintenance flow and recession flows. The 
environmental watering
 enabled the submerged aquatic vegetation (in particular 
Characeae
 sp
) to persist over an extended period of time. This is a different response to that observed in 2012-13 where the recession of the maintenance flow was rapid and 
Characeae
 
sp
 was rapidly exposed and desiccated. The recession of future environmental watering actions should be managed with consideration to aquatic vegeta
tion (see flow recommendations).
The desiccated 
algae 
that remain on the surface of the riverbank sediment after the recession of flows 
could provide a nutrient source that would 
increase
 productivity during subsequent riverbank inundation. This may be important in the Edward-Wakool system, because 
previous monitoring 
has shown there is a low availability of nutrients in this system which may limit productivity.
Terrestrial vegetation
There 
was
 no significant 
change
 in the percent cover of terrestrial 
riverbank 
vegetation in each river before, during and after the environmental watering, suggesting there was no 
response to environmental watering actions
. However, 
t
he monitoring concluded in March 2014, a month after the end of the maintenance flow recession, and may not have continued long enough to detect terrestrial vegetation responses to the environmental watering. It is possible that terrestrial vegetation on the lower part of the riverbank may have increased after March. Longer term responses of riverbank vegetation to environmental watering will be examined as part of the Long Term Intervention Monitoring project in the Edward-Wakool system (Watts et al. 2014).
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Background
Riverbank vegetation and aquatic vegetation play an important role in river ecosystems and provides habitat for fish, invertebrates, frogs and birds (Roberts and Marston 2011). The cover and composition of aquatic vegetation can determine the availability of oviposition sites for macro invertebrates calling and spawning locations for frogs (Wassens et al. 2010) and support wetland food webs and zooplankton communities (Warfe and Barmuta 2006). Furthermore, the response of aquatic and riverbank vegetation following a flow event can assist understanding the response of other biological indicators. 
Riverbank plant survival and growth is affected by the frequency and duration of inundation (Toner and Keddy 1997; Johansson and Nilsson 2002). Frequent inundation can delay reproduction (Blom and Voesenek 1996), whilst long duration of inundation can reduce growth (Blom et al. 1994; Johansson and Nilsson 2002). Favourable soil moisture and nutrient conditions created by a receding flood can encourage rapid recovery and root and shoot development and many plants, including emergent macrophytes and riparian understorey herbs, often germinate on flood recession (Nicol 2004; Roberts and Marston 2011). Differences in seasonal patterns of inundation within a single year can result in different survival, growth and reproduction responses of riverbank and aquatic plant species (Lowe 2002).
Instream aquatic vegetation and riverbank vegetation surveys were undertaken from September 2013 to March 2014 to evaluate the response to Commonwealth Environmental watering actions.
Hypotheses
· The percent cover of aquatic vegetation and riverbank vegetation will be higher in rivers receiving environmental water than in those not receiving environmental water.
· Recession flows of longer duration will result in greater response than those having a short recession.
Methods
A rapid habitat assessment was undertaken once per month at the four focus rivers (Colligen Creek, Wakool River, Yallakool Creek and Little Merran Creek) over the eight month survey period (September 2013 to March 2014). Overall river characteristics were recorded including surrounding land use, general assessments of the surrounding vegetation communities, soil type, continuity of fringing vegetation, percent open water and percent inundated vegetation cover. 
Three sites within each focus river were surveyed monthly between September 2013 and March 2014. One hundred (100) metre long transects that ran along the water’s edge of the river channel were surveyed to monitor changes in the percent cover of terrestrial and aquatic vegetation over time. Each transect was ten metres wide, which allowed for five metres on the riverbank side to represent terrestrial riverbank vegetation and 5m within the water representing submerged and emergent aquatic vegetation plus , in some cases, inundated riverbank vegetation. Measurements of percent cover along each 100m transect were taken visually at 5 m intervals. The riverbank transect was classed as grasses (tall and short), herbs (tall and short), logs and litter, and bare ground. Aquatic vegetation was classed as tall emergent, short emergent, broadleaf emergent, attached floating, or submerged and the percent cover of each class was recorded. 
The aim of the monitoring was to assess vegetation responses to environmental watering action in two zones: 1) Aquatic vegetation within 5 m of water adjacent to the water’s edge – representing shallow inundated terrestrial vegetation or submerged and emergent aquatic vegetation; and 2) Riverbank vegetation in a 5 m transect adjacent on the riverbank to the water’s edge. This riverbank vegetation becomes inundated aquatic habitat when water levels rise during instream freshes.
A two-way nested ANOVA was conducted to look at the effect of environmental flow Cod maintenance and recession flow on aquatic vegetation. Here, mean percent cover was compared across Period (before, during and after environmental watering) and CI (control rivers, impact rivers). A significant p-value for interaction between the two fixed factors: Period (before, during sustained flow, recession) and CI (control rivers, impact rivers) indicates that the mean percent of aquatic vegetation changed in impact rivers as a result of the flow compared to rivers not receiving environmental water. Significant differences in CI only indicate differences in vegetation cover across control and impact rivers regardless of flow period (Period).The survey dates were used as follows: Before: September; During the maintainence flows: October and November surveys; After the maintainence flows (which was during the gradual recession): the December and January. 
Results and discussion
Aquatic vegetation response to environmental watering
Overall, there was greater cover of submerged aquatic vegetation in Yallakool Creek compared to the control rivers, regardless of Period (before, during, after watering) (Figure 33, Figure 34). The higher amounts of submerged aquatic vegetation in Yallakool River at the start of the watering year may be due to the positive effects that environmental watering in 2012-13, such that there was dried macroalgae and nutrients on the riverbank that may have promoted a response in submerged vegetation in Yallakool Creek in 2013-14. There were significant differences in tall emergent vegetation among the control rivers (significantly more in the control rivers than in Yallakool Creek), but environmental flows did not have any effect on percent cover of these vegetation types.
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Figure 33. Mean percent cover (%) of aquatic vegetation across study sites in a) Colligen Creek, b) Yallakool Creek, c) Wakool River and d) Little Merran River during the 2013-2014 study period.
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Figure 34. Characeae sp that increased in cover in the Yallakool Creek during the 2013-14 environmental watering action

Although significant differences between the impact and control rivers were apparent (Table 17, Figure 35), there was little variation in aquatic vegetation response within each focus river before the environmental watering actions, during and at recession of the actions (Figure 35). Each focus river responded differently in terms of aquatic vegetation cover and diversity over the survey period (Figure 33; Figure 35). Hydrological conditions, such as water depth and stability of water levels (Casanova and Brock 2000), and channel geomorphology can strongly influence both aquatic vegetation community response and structure (Brock et al. 2006; Thoms et al. 2006). 

Table 17. Statistical results for 2 way mixed-effects Analysis of Variance (ANOVA) looking at the effect of environmental flows on aquatic vegetation. A significant p-value for interaction between the two fixed factors: Period (before, during sustained flow, recession) and CI (control rivers, impact rivers) indicates that the mean percent of aquatic vegetation changed in impact Rivers as a result of the flow compared to rivers not receiving environmental water. Significant differences in CI only indicate differences in vegetation cover across control and impact rivers regardless of flow period (Period).
	
	Species
	Main effect
	d.f
	F-test
	p-value

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	Cod maintenance and recession flows: Yallakool creek

	
	Submerged aquatic
	Period (B-D-R)
	2,39
	6.100
	0.005

	
	
	CI (C-I)
	1,39
	157.59
	<0.001

	
	
	Period*CI
	1,39
	21.890
	<0.001

	
	Tall emergent
	Period (B-D-R)
	1,39
	0.218
	0.805

	
	
	CI (C-I)
	2,39
	1.814
	0.186

	
	
	Period*CI
	1,39
	0.109
	0.897

	
	Short emergent
	Period (B-D-R)
	1,39
	0.045
	0.955

	
	
	CI (C-I)
	2,39
	7.408
	0.009

	
	
	Period*CI
	1,39
	0.053
	0.948

	
	Broadleaf emergent
	n/a
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Figure 35. Mean percent cover (±1SE) of aquatic vegetation in the Edward-Wakool system before (B), during the Yallakool maintenenace flow (D) and during the recession of the flow (R) in 2014. The Wakool River and Little Merran Creek did not receive environmental water, and were used as controls.
The environmental watering had a significant effect on the submerged aquatic vegetation in Yallakool Creek. There was a significant increase in the percent cover of submerged aquatic vegetation in Yallakool Creek in response to the Cod maintenance and recession flows (Table 17). Submerged aquatic vegetation cover in Yallakool Creek was relatively low in September 2013, however doubled during October and November 2013 (Figure 33, 35) during the sustained environmental flow. The extended duration of inundation provided an opportunity for some submerged species, such as Characeae sp, to increase in area during the environmental watering action (Figure 34). This macroalgae provides habitat for invertebrates and small fish that in turn are preyed upon by fish, amphibians and birds and would be expected to benefit river productivity. The submerged aquatic vegetation reduced during December 2013 and was greatly reduced by January 2014, because the water levels receded at the end of the environmental watering in late January 2014 (Figure 35).
The slower recession of the environmental watering action in the Yallakool Creek extended the period for growth and duration of the submerged algae. In contrast, in 2012-13 the drawdown after the environmental watering was very rapid and all the new algal growth was exposed and desiccated. Although there was evidence of desiccated algae on the exposed sediment during the recession in 2013-14 (Figure 34), the slower draw down in 2013-14 enabled submerged algae to continue growing. Once desiccated, the algae could provide a nutrient source on the surface of the sediment that would likely assist productivity during subsequent riverbank inundation events. This may be important in the Edward-Wakool system, because monitoring over the past three years has shown there is a low availability of nutrients in this system which may limit productivity.
Terrestrial vegetation response

Colligen Creek had the highest cover of tall grasses and tall herbs; whereas Yallakool Creek contained the highest short herb cover and Little Merran Creek had the least percent cover of riverbank plant classes of all the focus rivers (Figure 36). There were no significant differences in tall herbs found across the focal rivers (Figure 37, Table 18).
Significant differences in vegetation were observed among rivers (Table 18, Figure 37). Yallakool Creek had significantly higher short herb cover and significantly less tall and short grasses than Little Merran Creek and the Wakool River (Figure 37, Table 18). However, these differences were not in response to the 2013-14 environmental watering actions because there were no significant changes in the percent cover of vegetation in each river before, during and after the environmental watering (Table 18). 


[image: ]
Figure 36. Mean percent cover (%) of riverbank vegetation across study sites in a) Yallakool Creek, b) Colligen Creek, c) Wakool River and d) Little Merran River during the 2013-2014 study period.

Table 18. Statistical results for 2 way mixed-effects Analysis of Variance (ANOVA) looking at the effect of environmental flows on terrestrial vegetation. A significant p-value for interaction between the two fixed factors: Period (before, during sustained flow, recession) and CI (control rivers, impact rivers) indicates that the mean percent of aquatic vegetation changed in impact Rivers as a result of the flow compared to rivers not receiving environmental water. Significant differences in CI only indicate differences in vegetation cover across control and impact rivers regardless of flow period (Period).
	
	Species
	Main effect
	d.f
	F-test
	p-value

	
	
	
	
	
	

	
	
	
	
	
	
	

	Cod maintenance and recession flows: Yallakool creek

	
	Tall grasses
	Period (B-D-R)
	2,39
	0.000
	 1.000

	
	
	CI (C-I)
	1,39
	5.041
	0.030

	
	
	Period*CI
	1,39
	0.000
	1.000

	
	Short grasses
	Period (B-D-R)
	2,39
	0.014
	0.985

	
	
	CI (C-I)
	1,39
	7.787
	0.008

	
	
	Period*CI
	1,39
	0.029
	0.971

	
	Tall herbs
	Period (B-D-R)
	2,39
	0.473
	0.626

	
	
	CI (C-I)
	1,39
	0.001
	0.969

	
	
	Period*CI
	1,39
	0.237
	0.790

	
	Short herbs
	Period (B-D-R)
	2,39
	0.173
	0.841

	
	
	CI (C-I)
	1,39
	5.271
	0.027

	
	
	Period*CI
	1,39
	0.086
	0.917



The lack of significant change in vegetation cover response to the 2013-14 environmental flows may be, in part, because minimal inundation of the riverbank occurred in Yallakool Creek during the environmental watering action (see hydraulic modelling in Watts et al 2013b). If environmental watering actions do not sufficiently increase the wetted surface area to facilitate a response of riverbank vegetation this may have negative consequences for instream productivity, because the inundation of riverbank vegetation following larger flow events can increase plant productivity and contribute to carbon and nutrient dynamics in aquatic and terrestrial ecosystems (Sims and Thoms 2002) and provide habitat for a range of organisms.
In addition, it may be that the monitoring in 12-13 did not extend not long enough to detect vegetation responses to the 2013-14 flow. The vegetation monitoring concluded in March 2014, a month after the end of the cod maintenance flow recession. It is possible that terrestrial vegetation may have subsequently increased in the section of the river bank that was wetted during the environmental watering and subsequently exposed. The longer term responses of riverbank vegetation will be examined in future years in the Long Term Intervention Monitoring (LTIM) project in the Edward-Wakool system (Watts et al. 2014).
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Figure 37. Mean percent cover (±1SE) of terrestrial vegetation in the Edward-Wakool system before (B), during the sustained Yallakool flow (D) and during the recession of the Yallakool flow (R) in 2014. The Wakool River and Little Merran Creek did not receive environmental water, and were used as controls. Planned comparisons with significant interactions between control-impact rivers (impact river; Yallakool, control rivers; Wakool River, Little Merran Creek) and Period (B, D, R) are marked with an asterisk, indicating that mean larval abundance changed significantly in Yallakool Creek either during the environmental watering.
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